Lecture 25: Revision Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago

Random Variables Discrete Random Variables Continuous Random Variables

Operations of Random Variables

Random Variables Discrete Random Variables Continuous Random Variables

Operations of Random Variables

- Sample (state), sample space, event
- Union, Intersection, Mutually exclusive, Complement
- Axioms of probability: bound, whole space, addition
- calculation of probability, P(A ∪ B) = P(A) + P(B) P(A ∩ B), several events.
- Conditional Probability, Bayes' rule (ℙ(B | A) · ℙ(A) = ℙ(A ∩ B) = ℙ(A | B) · ℙ(B)), independence of events

Random Variables Discrete Random Variables Continuous Random Variables

Operations of Random Variables

- Random variable is a function from sample to real numbers
- probability mass function, probability distribution function, cumulative distribution function
- ▶ joint distribution, independent rv.
- expectation, expectation of functionals, affine transform, sample mean
- variance, standard derivation, covariance, correlation, affine transform

- pmf, mean, variance
- Indicator function = Bernoulli, binomial, Poisson, Geometric, negative binomial

Given we have an independent Bernoulli test in each time-slot.

- Binomial r.v. is the total count of success within some interval
- Poisson r.v. is limit of binomial distribution given mean of count of success fixed.
- Geometric r.v. is count of test until the first success
- Negative Binomial r.v. is the count of test until several success.

pdf, mean, variance, normalizing factor

- ▶ Gaussian (normal), bivariate, scaling and centering, summation,
- Exponential, scaling, min of independent exp, memoryless
- Gamma, is generalized exp, scaling, summation
- Cauchy distribution, no mean

Random Variables Discrete Random Variables Continuous Random Variables

Operations of Random Variables

Operations of Random Variables

- Change of Variables: Y = g(X), $f_Y(y) = f_X(x)|J_G(x)|^{-1}$
- Summation (convolution): $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(x) f_Y(a-x) dx$
- ► Conditional distribution (by event, by rv), conditional expectation: $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$
- Moment Generating Functions: $M(t) = \mathbb{E}\left[e^{tX}\right]$, summation, Gaussian

Random Variables Discrete Random Variables Continuous Random Variables

Operations of Random Variables

Estimation and Limit Theorems

Markov inequalities, Chebyshev inequality

$$\mathbb{P}(X \ge a) \le rac{\mathbb{E}[X]}{a}, \quad \mathbb{P}\Big(|X - \mu| \ge k\Big) \le rac{\sigma^2}{k^2}$$

weak and strong Law of Large Numbers

$$P\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right\} \to 0 \quad \text{as} \quad n \to \infty$$
$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = \mu \quad \text{with probability 1}$$

Central Limit Theorem

$$rac{X_1+\dots+X_n-n\mu}{\sigma\sqrt{n}}
ightarrow {\sf N}(0,1)$$
 in distribution