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Where are we?

Sums of independent r.v.

Expectation of Sums

Covariance

Correlation



Sum of two independent r.v.

Given X , Y independent, continous r.v. with density function fX ,
fY , the density function of X + Y can be written as,

fX+Y (a) =

∫ ∞

−∞
fX (a− y)fY (y)dy =

∫ ∞

−∞
fX (x)fY (a− x)dx



Sums of uniform distributions

If X1, X2 are independent identical uniform distributed on (0, 1),
what is the distribution of X1 + X2?



Continued..

If X1, X2, · · · , are independent identical uniform distributed on
(0, 1). What is the expectation of N where

N = min{n : X1 + X2 + · · ·+ Xn > 1}

Let Fn denote cummulative distribution function of X1 + · · ·+ Xn.
By Mathematical Induction, we first try to prove
Fn(x) = xn/n!, 0 ≤ x ≤ 1.

So P{N > n} = Fn(1)



Sums of Normal distribution

Recall density function of a normal distribution with parameters
(µ, σ2) is given by

f (x) =
1√
2πσ

exp(−(x − µ)2

2σ2
)

Proposition: If X1, X2, · · · , Xn are independent random random
variables with respective parameters (µ1, σ

2
1), (µ2, σ

2
2), · · · ,

(µ1, σ
2
1),

then X1 + X2 + · · ·+ Xn is a normal random variable with
parameters (µ1 + µ2 + · · ·+ µn, σ

2
1 + σ2

2 + · · ·+ σ2
n).



Sums of Gamma distribution

Recall density function of a gamma distribution with parameters
(α, λ) is given by

f (x) =

{
λe−λx (λx)α−1

Γ(α) x ≥ 0

0 x < 0

Proposition: If X and Y are independent gamma random variables
with respective parameters (s, λ) and (t, λ), then X + Y is a
gamma random variable with parameters (s + t, λ).
• So α is refereed as shape parameter, λ is refereed as scale
parameter.

You are also advised to read the relevant part (Poisson, binomial,

geometric) on Ross book.
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Revision: Expected Value of a function of a r.v.

If X and Y have a joint probability mass function p(x , y), then

E [g(X ,Y )] =
∑
y

∑
x

g(x , y)p(x , y)

If X and Y have a joint probability density function f (x , y), then

E [g(X ,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x , y)f (x , y)dxdy



Derivation

Suppose that E [X ] and E [Y ] are both finite and let
g(X ,Y ) = X + Y . Then, in the continuous case,

E [X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x + y)f (x , y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xf (x , y)dydx +

∫ ∞

−∞

∫ ∞

−∞
yf (x , y)dxdy

=

∫ ∞

−∞
xfX (x)dx +

∫ ∞

−∞
yfY (y)dy

= E [X ] + E [Y ]

What about E [X1 + · · ·+ Xn]?



Sample Mean

Let X1, . . . ,Xn be independent and identically distributed random
variables having distribution function F and expected value µ.
Then X1, . . . ,Xn is said to constitute a sample from the
distribution F .
The quantity

X̄ =
n∑

i=1

Xi

n

is called the sample mean.
Now what is E [X̄ ]?

Note: when the distribution mean µ is unknown, the sample mean
is often used in statistics to estimate it.



Example: A Summation Formula

Consider any nonnegative, integer-valued random variable X . If, for
each i ≥ 1, we define

Xi =

{
1 if X ≥ i
0 if X < i

then E [X ] =
∑∞

i=1 E (Xi )

Note E (Xi ) = P{X ≥ i}, so

E [X ] =
∞∑
i=1

P{X ≥ i}

a useful identity.



Example: Sorting elements

Suppose that n elements, 1, 2, · · · , n must be stored in a computer
in the form of an ordered list. Each unit of time, a request will be
made for one of these elements i being requested, independently of
the past, with known probability P(i), i ≥ 1,

∑
i P(i) = 1.

What ordering minimizes the average position in the line of the
element requested?

Suppose that the elements are numbered so that
P(1) ≥ P(2) ≥ · · · ≥ P(n). Let X denote the position of the
requested element. Now, under any ordering, O = i1, i2, . . . , in,

PO{X ≥ k} =
n∑

j=k

P (ij)



Where are we?

Sums of independent r.v.

Expectation of Sums

Covariance

Correlation



Expected value of multiplication of functions of
independent r.v.

If X and Y are independent, then, for any functions h and g ,

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

Continuous case proof:



Definition of Covariance

Recall definition of VarX :

The covariance between X and Y , denoted by Cov (X ,Y ), is
defined by

Cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]



Alternative form

Cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]

⇕
Cov(X ,Y ) = E[XY ]− E[X ]E[Y ]



Properties

(i) Cov(X ,Y ) = Cov(Y ,X )

(ii) Cov(X ,X ) = Var(X)

(iii) Cov(aX ,Y ) = aCov(X ,Y )

(iv) Cov (
∑n

i=1 Xi ,
∑m

i=1 Yj) =
∑n

i=1

∑m
i=1 Cov (Xi ,Yj)



Variance of sum

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi ) + 2
∑
i<j

Cov (Xi ,Xj)



Example: Sample Variance

Let X1, . . . ,Xn be independent and identically distributed random
variables having expected value µ and variance σ2, Llet
X̄ =

∑n
i=1 Xi/n be the sample mean. Then what is Var(X̄ )?

The quantities Xi − X̄ , i = 1, . . . , n, are called deviations, as they
equal the differences between the individual data and the sample
mean. The random variable

S2 =
n∑

i=1

(
Xi − X̄

)2
n − 1

is called the sample variance. Find E
[
S2
]
.
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Definition

The correlation of two random variables X and Y , denoted by
ρ(X ,Y ), is defined, as long as Var(X ) Var(Y ) is positive, by

ρ(X ,Y ) =
Cov(X ,Y )√
Var(X ) Var(Y )

Then −1 ≤ ρ(X ,Y ) ≤ 1.



Example: Derivation and sample mean are uncorrelated

Let X1, . . . ,Xn be independent and identically distributed random
variables having variance σ2. Then

Cov
(
Xi − X̄ , X̄

)
= 0



Example: if Y = a + bX

Given mean and variance of X to be µ and σ2, calculate ρ(X ,Y ),
where Y = a+ bX .
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