
Math 18500 Week 6: Fourier Series

Introduction to Fourier Series. We have seen how to solve equations of the form

my′′ + by′ + ky = cos(ωt).

Aside from the exceptional case b = 0, the general solution always takes the form

y = A cos(ωt− φ) + yh

where yh is a general solution of the corresponding homogeneous equation.

More generally, we would like to be able to solve equations

my′′ + by′ + ky = f(t)

where the function f(t) oscillates with some frequency, but is not necessarily a perfect sinusoid. A function
f(t) like this is said to be periodic. A typical example of a periodic function looks like this:
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More formally, a function f(t) is said to be periodic with period T (or T -periodic) if it satisfies the identity

f(t+ T ) = f(t)

Any function with period T also has period 2T , 3T , etc. - the smallest period of a function is called its
fundamental period. Usually we will be thinking about periodic functions with period 2π, so

f(t+ 2π) = f(t).

We won’t lose any generality by doing this - periodic functions with arbitrary periods can be converted to
periodic functions with period 2π by “rescaling” the time variable. For instance, the function

g(t) = cos(2πt)

is 1-periodic, but if we replace t with u
2π we obtain the function

f(u) = g
( u

2π

)
= cos

(
2π · u

2π

)
= cos(u)

which is 2π-periodic.

One way to think about periodic functions is to listen to what they “sound like”, by giving them as an
input to a speaker and playing them like music. One example of a tool which allows you to do this on your
computer can be found here:

https://synthtech.com/waveedit/
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It’s interesting to try out a few of the preset functions. If you listen to a pure sine wave, then you will hear
a pure pitch (which actually sounds kind of strange!). If you listen to any other function you will hear a
“superposition” of different pitches. In fact, the software will allow you to explicitly add and subtract pitches
at will (by changing the heights of the bars below the graph of the function).

Mathematically, this idea can be expressed by writing f(t) as a sum of pure sinusoids of different amplitudes
and frequencies:

f(t) =
∑
i

Ai cos(ωit− φi).

In order for f(t) to have period 2π, each of the frequencies ωi must be an integer, so

f(t) =

∞∑
n=0

An cos(nt− φn).

It is more traditional to eliminate the phase shifts and just write

f(t) = c0 +

∞∑
n=1

an cos(nt) + bn sin(nt)

An infinite sum of this form is called a Fourier series.

It turns out that any1 periodic function can be written as a Fourier series - this is a mathematical theorem,
which we will not prove (we will come closer to proving it in math 186).

A simpler form of the Fourier expansion can be derived by expressing cos(x) and sin(x) in terms of complex
exponentials, using the formulas

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
.

When we do this, we get the complex form of the Fourier series:

f(t) = c0 +

∞∑
n=1

an

(
eint + e−int

2

)
+ bn

(
eint − e−int

2i

)

= c0 +

∞∑
n=1

(
an − ibn

2

)
eint +

(
an + ibn

2

)
e−int

= c0 +

∞∑
n=1

cne
int + c−ne

−int

=

∞∑
n=−∞

cne
int

Given a complex Fourier series of a real-valued function, we can always recover the real form of the Fourier
series using the formulas

an = 2Re[cn] , bn = −2Im[cn]

which follow from the computations above.

In some simple cases, Fourier series can be found using purely algebraic methods. For example, to determine
the Fourier series of cos3(t), we can write

cos3(t) =

(
eit + e−it

2

)3

=
e−3it + 3eit + 3e−it + e−3it

8

This is the complex form of the Fourier series. To find the real form, we can combine the complex exponentials
e±it and e±3it:

cos3(t) =
1

4

(
e−3it + e3it

2

)
+

3

4

(
e−it + eit

2

)
=

1

4
cos(3t) +

3

4
cos(t)

1Subject to certain conditions, ask your instructor for more details and also see page 10.



3

If you believe that any periodic function has a Fourier series,2 then it is surprisingly straightforward to
determine the coefficients ci. For example, to determine c0, we can take the identity

f(t) =

∞∑
n=−∞

cne
int

and integrate both sides with respect to t from −π to π (or any other interval of length 2π):∫ π

−π
f(t)dt =

∫ π

−π

∞∑
n=−∞

cne
intdt =

∞∑
n=−∞

cn

∫ π

−π
eintdt

For n 6= 0, we get (since cos(2πn) = 1 and sin(2πn) = 0 for any integer n):∫ π

−π
eintdt =

eint

in

∣∣∣∣π
−π

=
eπin − e−πin

in
=

(−1)n − (−1)n

in
= 0

So all terms of the sum with n 6= 0 vanish. For n = 0, we get∫ π

−π
ei0tdt =

∫ 2π

0

1dt = 2π.

Substituting, we have ∫ π

−π
f(t)dt = 2πc0,

or

c0 =
1

2π

∫ π

−π
f(t)dt

A nice way to think about this is that c0 is the average value of f(t) on the interval [0, 2π].

A similar argument can be used to derive the general formula

cn =
1

2π

∫ π

−π
f(t)e−intdt

which allows us to calculate any coefficient in the series.3 The integral on the right is called a Fourier integral.

Specifically, to derive the formula above we first write

f(t)e−int =

∞∑
k=−∞

cke
i(k−n)t.

Then we integrate both sides, obtaining∫ π

−π
f(t)e−intdt =

∞∑
k=−∞

ck

∫ π

−π
ei(k−n)tdt

The integrals inside the sum are all zero except for the one with n = k, which is equal to 2π. Therefore,∫ π

−π
f(t)e−intdt = 2πcn.

In math 186 you will learn about a more conceptual way of thinking about this formula for the coefficients,
in terms of orthogonal functions and Hilbert spaces. For now, just think of it as a convenient observation.

2At one point in time, most mathematicians didn’t believe it!
3The way that WaveEdit works is that it computes the coefficients cn by evaluating the Fourier integrals numerically for

a large number of values of n. It then allows you to adjust the amplitudes |cn| - this changes the shape of the graph of the

function and therefore what it “sounds like”.
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As a simple example which can be computed explicitly, consider the square wave sq(t), which is 2π-periodic
function whose graph looks like this:

Explicitly, sq(t) is given on the interval −π < t < π by the formula

sq(t) =

{
π 0 < t < π
0 −π ≤ t < 0

and for values of t outside this interval it is extended periodically (as shown above).

To calculate the Fourier coefficients of sq(t), first observe that the coefficient c0 is the average value,

1

2π

∫ π

−π
sq(t)dt =

1

2π
· π2 =

π

2

The remaining coefficients cn can be calculated as follows:

cn =
1

2π

∫ π

−π
sq(t)e−intdt

=

∫ 0

−π
0 · e−intdt+

1

2π

∫ π

0

π · e−intdt

=
1

2π

∫ π

0

π · e−intdt.

=
e−int

−2in

∣∣∣∣π
0

=
1− e−πin

2in

Since e−πin = −1 for odd values of n, and e−πin = 1 for even values of n.

cn =


1
in n odd
0 n even , n 6= 0
1
2 n = 0

Therefore, the Fourier series of sq(t) is given by

sq(t) = · · · − e−5it

5i
− e−3it

3i
− e−it

i
+

1

2
+
eit

i
+
e3it

3i
+
e5it

5i
+ · · ·

=
π

2
+

2

1
sin(t) +

2

3
sin(3t) +

2

5
sin(5t) + · · ·

where the real form can either be obtained using the identity

eix − e−ix = 2i sin(x)

for the values x = t, 3t, 5t, . . . , or by using the relationship between real and complex Fourier coefficients,

bn = −2Im[cn].

Finally, we close with a simple but subtle remark. Suppose we have two Fourier series

∞∑
n=−∞

cne
int ,

∞∑
n=−∞

c̃ne
int
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which converge to the same function f(t):

f(t) =

∞∑
n=−∞

cne
int =

∞∑
n=−∞

c̃ne
int

Then we must have
cn = c̃n.

If this isn’t immediately obvious to you, go back to the point where we derived the formula

cn =
1

2π

∫ π

−π
f(t)e−intdt

and think carefully about the argument we made - it applies equally well to either Fourier series above.
Therefore,

c̃n =
1

2π

∫ π

−π
f(t)e−intdt = cn
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The Frequency Domain. You would be forgiven for thinking that the formula for sq(t) which we derived
above is an unacceptably complicated way of expressing the numbers 0 and π. It might seem easier to
describe sq(t) by directly giving its values, rather than as a complicated sum of trigonometric functions.

But this would be missing the point - using Fourier series actually gives us a completely different way of
thinking about functions. Rather than thinking of a function f(t) as a thing which has a value at any given
point in time, we can think of it as a thing which is composed of a number of oscillations, and has a different
amplitude for every possible frequency. Another way to say this is that Fourier series allow us to think in
the frequency domain, instead of the time domain.

To get comfortable working in the frequency domain, it helps to introduce some notation for the Fourier
coefficients. For a function f(t), we can write

f̂n =
1

2π

∫ π

−π
f(t)e−intdt

for the nth Fourier coefficient. With this notation, we have

f(t) =

∞∑
n=−∞

f̂ne
int.

We can then ask the question, how do operations on functions which we are familiar with (sums and products,
differentiation and integration, etc.) affect the Fourier coefficients?

For example, suppose we multiply f(t) by a number k:

k · f(t) = k ·
∞∑

n=−∞
f̂ne

int =

∞∑
n=−∞

kf̂ne
int

The effect of this operation is to multiply each Fourier coefficient by k.

Similarly, suppose we have two functions,

f(t) =

∞∑
n=−∞

f̂ne
int and g(t) =

∞∑
n=−∞

ĝne
int.

If we add these functions, we get

f(t) + g(t) =

∞∑
n=−∞

f̂ne
int +

∞∑
n=−∞

ĝne
int =

∞∑
n=−∞

(
f̂n + ĝn

)
eint

So, when we add two functions together, we add all of their Fourier coefficients individually.

Differentiation is equally easy:

d

dt

∞∑
n=−∞

f̂ne
int =

∞∑
n=−∞

d

dt

[
f̂ne

int
]

=

∞∑
n=−∞

inf̂ne
int

d2

dt2

∞∑
n=−∞

inf̂ne
int =

∞∑
n=−∞

d

dt

[
inf̂ne

int
]

=

∞∑
n=−∞

(in)2f̂ne
int

In fact, this is vastly easier than differentiating functions whose values are given to us - instead of performing
all sorts of complicated rules (product rule, chain rule, etc.), all we have to do is multiply each Fourier
coefficient by a simple factor.
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Unfortunately, not all things are easy in the frequency domain. If we multiply two functions, here is what
happens to the Fourier coefficients:

f(t)g(t) =

∞∑
n=−∞

f̂ke
ikt

∞∑
l=−∞

ĝle
ilt

=

∞∑
k,l=−∞

f̂kĝle
ikteilt

=

∞∑
n=−∞

∑
k+l=n

f̂kĝle
i(k+l)t

=

∞∑
n=−∞

( ∞∑
k=−∞

f̂kĝn−k

)
eint

So, the Fourier coefficients of the product are given by an incredibly convoluted formula - in fact, this type
of operation is actually called a convolution. We will see other examples of convolutions later.

Knowing only the rules above allows us to easily solve second order linear equations

my′′ + by′ + ky = f(t),

where f(t) is an arbitrary periodic function. Namely, we can recast any such equation as a relationship

between the Fourier coefficients ŷn and f̂n:

m(in)2ŷn + b(in)ŷn + kŷn = f̂n

Rather than solving a differential equation, we now must solve an algebraic equation, which is easy:

ŷn =
f̂n

k −mn2 + inb

Now that we have the Fourier coefficients of y(t), we can convert back to the time domain:

y(t) =

∞∑
n=−∞

ŷne
int =

∞∑
n=−∞

f̂ne
int

k −mn2 + inb

As long as b and k are positive, the denominators in this formula will be nonzero, and the sum will converge
to a solution of the equation we wanted to solve!

Now, you might want to actually evaluate the sum on the right hand side - good luck to you in that case!
Often it is better to use a computer to sum the first 100 terms and have it graph the result. Again, the
point of using Fourier series is not to understand the values of the function, but rather to understand the
oscillations which that function is composed of.
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Sine and Cosine Series. You are probably familiar with the concept of even and odd functions. An even
function is a function which satisfies the identity

f(−t) = f(t)

and an odd function is one which satisfies the opposite identity,

f(−t) = −f(t)

For example, any even power t2, t4, t6, . . . is an even function, and any odd power t, t3, t5, . . . is odd.

Likewise, the function sin(t) is odd, whereas cos(t) is even.

The function et is neither even nor odd, but it is the sum of an even function and an odd function:

et =
et + e−t

2
+
et − e−t

2
= cosh t+ sinh(t)

It’s a fun exercise to prove that any function can be written in exactly one way as the sum of an even
function and an odd function (called the even part and the odd part of the function).

In the case of a periodic function, we can write

f(t) = c0 +

∞∑
n=1

an cos(nt) + bn sin(nt).

If we replace t with −t, we see that

f(−t) = c0 +

∞∑
n=1

an cos(nt)− bn sin(nt).

Therefore, in order for f(t) to be even, we must have

c0 +

∞∑
n=1

an cos(nt) + bn sin(nt) = c0 +

∞∑
n=1

an cos(nt)− bn sin(nt)

and therefore bn = −bn for every n, i.e. bn = 0.

For f(t) to be odd, we must have an = c0 = 0 for every n, by similar reasoning.

It follows that any even periodic function g(t) can be represented as a cosine series,

g(t) = c0 +

∞∑
n=1

an cos(nt) =
a0
2

+

∞∑
n=1

an cos(nt),

where the coefficients an are given by

an = 2Re [cn] = Re

[
1

π

∫ π

−π
f(t)e−int

]
=

1

π

∫ π

−π
f(t) cos(nt)dt

Similarly, any odd periodic function h(t) can be represented as a sine series,

h(t) =

∞∑
n=1

bn sin(nt)

where the coefficients bn are given by

bn = −2Im [cn] = −Im

[
1

π

∫ π

−π
h(t)e−int

]
=

1

π

∫ π

−π
h(t) sin(nt)dt.

In either case, half of the coefficients vanish, so computing them using the real formula is the same amount
of work as computing the complex coefficients using the complex formula.

There is a further trick which makes the task of computing the coefficients even simpler. Supppose that g(t)
is an even function. Then the functions g(t) cos(nt) are all even functions (exercise: the product of any two
even functions is even!) So, to compute the integral

1

π

∫ π

−π
g(t) cos(nt)dt
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we actually only have to compute the integral from 0 to π and multiply the result by 2:

1

π

∫ π

−π
g(t) cos(nt)dt =

2

π

∫ π

0

g(t) cos(nt)dt.

Similarly for an odd function h(t), the functions h(t) sin(nt) are all even (exercise: the product of two odd
functions is always an even function!). So in this case,

bn =
1

π

∫ π

−π
h(t) sin(nt)dt =

2

π

∫ π

0

h(t) sin(nt)dt.

For example, consider the sawtooth wave, which is given by the formula

sw(t) = −t
on the interval [−π, π], and then extended to have period 2π. Drawing the graph, we see that sw(t) is odd:

So, to compute its Fourier series we need only compute the coefficients bn (all an are zero automatically):

bn =
2

π

∫ π

0

−t sin(nt)dt

=
2

π

(
t cos(nt)

n

)∣∣∣∣π
0

− 2

π

∫ π

0

cos(nt)

n
dt

=
2

π
· π cos(nπ)

n
− 0

= 2 · (−1)n

n

This gives us the Fourier series,

sw(t) = 2 ·
∞∑
n=1

(−1)n

n
sin(nt)

Notice that something strange happens if we substitute t = π in this formula:

2 ·
∞∑
n=1

(−1)n

n
sin(nπ) = 2 ·

∞∑
n=1

0 = 0

This is different from the value of sw(t) at t = 0! More precisely, sw(t) has two different limiting values as
t→ π, but neither of them is 0.

What is going on here is that the Fourier series is averaging the two different limits. One of the limits is −1
and the other is +1,

lim
t→π+

sw(t) = 1 , lim
t→π−

sw(t) = −1.

so the Fourier series splits the difference and gives us the value 0.

As long as −π < t < π, the Fourier series actually gives the correct value. For example,
∞∑
n=1

(−1)n
2

n
sin
(n · π

2

)
= −2

1
+

2

3
− 2

5
+

2

7
− · · · = −2 tan−1(1) = −2 · π

4
= −π

2
= sw

(π
2

)
.

Here we have evaluated the infinite sum using the Taylor series of tan−1(x):

tan−1(x) = x− x3

3
+
x5

5
− x7

7
+ · · · .
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In general, it is only valid to evaluate Fourier series at points where the function is differentiable - at points
where the function or its derivative are discontinuous, the series may not converge, or it may converge to
the incorrect value. To learn about the details of this, you must take a course in mathematical analysis.

However, we can state the following theorem:

Convergence of Fourier Series. Let f(t) be a function which is 2π- periodic and differentiable except at
finitely many points in the interval [−π, π]. Also suppose that at every point where f(t) is not differentiable,
the limits

f(a+) = lim
t→a+

f(t) , f(a−) = lim
t→a−

f(t)

exist. Then at every point t = t0 where f(t) is continuous (i.e. f(t+0 ) = f(t−0 )), the Fourier series of f(t)
converges to the value f(t0):

f(t0) = c0 +

∞∑
n=1

an cos(nt0) + bn sin(nt0)

and at any other point, it converges to the average of the upper and lower limiting values,

f(t+0 ) + f(t−0 )

2
= c0 +

∞∑
n=1

an cos(nt0) + bn sin(nt0)

In this theorem it is crucial that the function f(t) is 2π- periodic. For a function which is not periodic, the
identity

f(t) = c0 +

∞∑
n=1

an cos(nt) + bn sin(nt)

is only guaranteed to be valid for values of t in the range

−π < t < π.

Fortunately, there is a trick for turning arbitrary functions into periodic ones! Actually, there are two tricks,
which get used in different contexts.

Given any function h(t) on the interval [0, π], we can first extend it to an odd function on [−π, π] by defining

hodd(t) =

{
h(t) 0 < t < π

−h(−t) −π < t < 0

on the interval [−π, π], and then we can extend it to a periodic function by defining

hodd(t+ 2πn) = hodd(t)

for arbitrary multiples of 2π. The result is an odd, 2π-periodic function hodd(t), which is equal to h(t) for
all values of t in the interval [0, π].

Similarly, we can extend h(t) to an even function by defining

heven(t) =

{
h(t) 0 < t < π

h(−t) −π < t < 0

on the interval [−π, π], and then we can extend it to a periodic function by defining

heven(t+ 2πn) = heven(t)

for arbitrary multiples of 2π. The result is an even, 2π-periodic function heven(t), which is equal to h(t) on
the interval [0, π].

It follows that the formulas

h(t) =
∞∑
n=1

bn sin(nt) , bn =
2

π

∫ π

0

h(t) sin(nt)dt

h(t) =
a0
2

+

∞∑
n=1

an cos(nt) , an =
2

π

∫ π

0

h(t) cos(nt)dt
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are valid for arbitrary differentiable functions on the interval [0, π], except possibly at the endpoints 0 and
π, where the odd/even periodic extension may have introduced discontinuities in the function.

There is one case when the odd periodic extension has a continuous derivative (and so the sine series of h(t)
gives the correct value, even at the endpoints). Namely, if h(0) = h(π) = 0, then when we make the odd
periodic extension, the values of h(0) and h′(0) match up on both sides (and similarly at t = π).

Similarly, if h′(0) = h′(π) = 0, then the even periodic extension has a continuous derivative (and so the
cosine series of h(t) gives the correct value, even at the endpoints.

Odd periodic extensions are therefore useful for solving boundary value problems of the form

my′′ + ky = f(t), y(0) = y(π) = 0,

where f(t) is a function on [0, π]. Boundary value problems of this type are called Dirichlet problems.

Simiarly, even periodic extensions are useful for solving boundary value problems of the form

my′′ + ky = f(t), y′(0) = y′(π) = 0.

Boundary value problems of this type are called Neumann problems.

To solve a Dirichlet problem, we can first expand f(t) as a sine series,

f(t) =

∞∑
n=1

bn sin(nt).

We then solve each of the equations
my′′n + kyn = bn sin(nt)

individually, and see that the solution takes the form

yn = Bn sin(nt)

for some value of Bn. This gives a particular solution,

y =

∞∑
n=1

yn =

∞∑
n=1

Bn sin(nt),

whose values at t = 0 and t = π are both clearly 0!

To solve a Neumann problem, we can first expand f(t) as a cosine series,

f(t) = c0 +

∞∑
n=1

an cos(nt)

and then solve the equations
my′′0 + ky0 = c0

my′′n + kyn = an cos(nt)

The solutions take the form
y0 = C0

yn = An cos(nt)

and we obtain a particular solution

y(t) =

∞∑
n=0

yn = C0 +

∞∑
n=1

An cos(nt)

whose derivative

y′(t) =

∞∑
n=1

−nAn sin(nt)

satisfies the boundary condition y′(0) = y′(π) = 0.
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