
Math 18500 Week 4: Second Order Homogeneous Equations

Linear Differential Operators. We have seen that it can be useful to distinguish between two types of
differential equations - linear and nonlinear. First order linear equations and first order systems of linear
equations are much easier to solve than nonlinear ones, and their solutions have nicer properties. The same
is true of higher order linear equations as well.

A differential equation of order n is said to be linear if it can be written in the form

pn(t)
dny

dtn
+ pn−1(t)

dn−1y

dtn−1
+ · · ·+ p1(t)

dy

dt
+ p0(t)y = f(t)

where p0(t), . . . , pn(t) and f(t) are arbitrary functions of t. Any other equation is said to be nonlinear.

There is a very rich theory of linear equations, which incorporates a number of robust and useful concepts.
By contrast, the theory of nonlinear equations is mostly restricted to a few special examples which can only
be solved approximately, or by a combination of ingenuity and physical/geometric insight. For this reason,
we will focus on linear equations for the remainder of the course.

When thinking about linear equations, it is useful to introduce the language of linear differential operators.

The simplest linear differential operator is the derivative operator, d
dt . It is an operator because it operates

on functions: given a function y(t), we can apply the operator d
dt , and the result is a new function,

d

dt
[y(t)] = y′(t).

This operation is linear, because it obeys the sum rule:

d

dt
[y1(t) + y2(t)] =

d

dt
[y1(t)] +

d

dt
[y2(t)]

and more generally,
d

dt
[c1y1(t) + c2y2(t)] = c1

d

dt
[y1(t)] + c2

d

dt
[y2(t)]

for any functions y1 and y2 and constants c1 and c2.

When we apply the derivative operator twice, the result is a second derivative:

d

dt

[
d

dt
[y]

]
=

d2y

dt2
= y′′

For second and higher derivatives it is useful to introduce the shorthand

D =
d

dt
,

because the notation
D2y = y′′ , D3y = y′′′ , etc.

is a bit easier on the eyes than
d2y

dt2
,

d3y

dt3
etc.,

and it more accurately reflects the idea that we are differentiating several times in a row.

In general, a linear differential operator is any operator of the form

O = pnD
n + pn−1D

n−1 + · · ·+ p2D
2 + p1D + p0,

where pi = pi(t) can be arbitrary functions of t.

When we apply an operator like this to a function y(t), we get a new function,

Oy = pnD
ny + pn−1D

n−1y + · · ·+ p2D
2y + p1Dy + p0y

= pn
dny

dtn
+ pn−1

dn−1y

dtn−1
· · ·+ p2

d2y

dt2
+ p1

dy

dt
+ p0y

and this operation is linear:

O [c1y1(t) + c2y2(t)] = c1O [y1(t)] + c2O [y2(t)]
1
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With this notation, any linear differential equation can be written conceptually in the form

Oy = f,

where O is a linear differential operator. This is helpful for the same reason that it is helpful to write systems
of linear equations in the form

Ax⃗ = b⃗

where A is a matrix - the abstraction helps us organize our thoughts and makes it clearer what’s going on.

For example, operator notation allows to clearly identify three properties of linear equations:

(1) Suppose that y1(t) and y2(t) are two solutions of a linear homogeneous equation:

Oy1 = 0

Oy2 = 0.

If c1 and c2 are arbitrary constants, and

y(t) = c1y1(t) + c2y2(t),

then y(t) is a solution of the same homogeneous equation:

O[c1y1 + c2y2] = c1Oy1 + c2Oy2 = 0 + 0 = 0

In other words, solutions of homogeneous equations can be superimposed.

(2) Suppose that yp(t) is a particular solution of an inhomogeneous equation,

Oyp = f

If yh(t) is any solution of the corresponding homogeneous equation,

Oyh = 0.

and if
y(t) = yp(t) + yh(t),

then y(t) is a solution of the original inhomogeneous equation:

Oy = Oyp +Oyh = f + 0 = f

(3) Suppose that y1(t) and y2(t) are solutions of linear inhomogeneous equations with different right
hand sides:

Oy1 = f1

Oy2 = f2

If c1 and c2 are arbitrary constants, and

y(t) = c1y1(t) + c2y2(t)

then y(t) is a solution of the inhomogeneous equation

O [c1y1 + c2y2] = c1f1 + c2f2

where the right hand side is a linear combination of the right hand sides of the original equations.

We will see that these properties are crucial for solving linear equations.
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Second Order Homogeneous Equations: Exponential Ansatz Method. In the next two sections we
will be focused on solving second order homogeneous equations

y′′ + py′ + qy = 0

whose coefficients p and q are constants. An equation like this can also be written using operator notation,

D2y + pDy + qy = 0,

or more succinctly as
Oy = 0

where
O = D2 + pD + q.

Most equations of this form can be solved using two key ideas:

1. The Exponential Ansatz.
2. The Superposition Principle.

You may not have seen the word ansatz before. It’s a German word, which means something like “educated
guess”. Probably it would be more accurate to say “lucky guess” - at least, this is what an ansatz usually
looks like to those who don’t already know the answer.

For second order homogeneous equations with constant coefficients, our lucky guess will take the form

y(t) = eλt,

where λ is an unspecified number (possibly complex). A guess of this form is called an exponential ansatz.

To see why the exponential ansatz is a good guess, recall that the identity

d

dt
eλt = λeλt

holds for any real or complex number λ. Similarly for the higher derivatives, we have

Dkeλt =
dk

dtk
eλt = λkeλt.

Therefore, if we make the substitution y = eλt in the equation

D2y + pDy + qy = 0

we get
λ2eλt + pλeλt + qeλt = 0.

Dividing by eλt, we obtain a quadratic equation for λ:

λ2 + pλ+ q = 0

The polynomial on the left hand side is called the auxiliary polynomial of the differential operator

O = D2 + pD + q.

In most cases, the auxiliary polynomial will have 2 distinct roots, λ1 and λ2 (which may be real or complex).
Therefore, we usually find two exponential solutions

y1(t) = eλ1t and y2(t) = eλ2t.

when we make an exponential ansatz.

For example, consider the equation
y′′ + 4y′ + 3y = 0

In this case, the auxiliary equation is
λ2 + 4λ+ 3 = 0,

which factors as
(λ+ 1)(λ+ 3) = 0,

and therefore has solutions λ1 = −1 and λ2 = −3. The corresponding exponential solutions are

y1(t) = e−t and y2(t) = e−3t.
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As another example, consider the equation

y′′ + 4y′ + 5y = 0.

In this case, the auxiliary equation is

λ2 + 4λ+ 5 = 0,

which has two complex roots:

λ =
−2±

√
42 − 4 · 5
2

= −2± i.

In this case, the exponential solutions are complex-valued functions,

y(t) = e(−2+i)t = e−2teit = e−2t(cos t+ i sin t) = e−2t cos t+ ie−2t sin t

and

y(t) = e(−2−i)t = e−2te−it = e−2t(cos t− i sin t) = e−2t cos t− ie−2t sin t.

However, in most applications we want to have real solutions - the complex solutions are not so useful.

To obtain two real solutions, recall that any complex equation can be split into real and imaginary parts. In
the example above, writing the complex solution as y = y1 + iy2, the equation that it satisfies is

(D2 + 4D + 5)(y1 + iy2) = 0.

Applying linearity, we find that

(D2 + 4D + 5)y1 + i(D2 + 4D + 5)y2 = 0 + 0i.

Splitting this equation into its real and imaginary parts, we conclude that

(D2 + 4D + 5)y1 = 0

and

(D2 + 4D + 5)y2 = 0

Therefore, the real and imaginary parts of the complex solution,

y1(t) = e−2t cos t and y2(t) = e−2t sin t,

are each individually solutions of the original differential equation.

Alternatively, this follows from the superposition principle, since y1 and y2 are both (complex) linear com-
binations of y and y:

y1(t) =
y(t) + y(t)

2
and y2(t) =

y(t)− y(t)

2i
.

and solutions of homogeneous equations can always be superimposed.

In either case (real or complex), we end up with two real solutions y1(t) and y2(t).
1. Since y1(t) and y2(t)

are both solutions of the linear homogeneous equation

O[y(t)] = 0,

the superposition principle tells us that any linear combination y(t) = c1y1(t) + c2y2(t) is a solution of the
same homogeneous equation:

O[c1y1 + c2y2] = c1O[y1] + c2O[y2] = 0 + 0 = 0.

We can use this to construct solutions with arbitrary initial values y(t0) and y′(t0) at any initial time t0.

For example, let’s use the superposition principle to solve the initial value problem

y′′ + 4y′ + 3y = 0 , y(0) = 0 , y′(0) = 2.

We have seen that the exponential solutions of this equation are

y1(t) = e−t and y2(t) = e−3t.

Therefore, any linear combination

y(t) = c1e
−t + c2e

−3t

1There is an exception when the characteristic equation has a repeated root - we will come back to this case later.
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is also a solution. The derivative of this solution is

y′(t) = −c1e
−t − 3c2e

−3t.

To achieve the correct initial conditions, we set t = 0, obtaining a system of equations for c1 and c2:

y(0) = c1 + c2 = 0

y′(0) = −c1 − 3c2 = 2.

Adding the two equations, we find that

c1 − c1 + c2 − 3c2 = 2,

so c2 = −1. Multiplying the first equation by 3 and adding it to the second, we see that

3c1 − c1 + 3c2 − 3c2 = 2,

so c1 = 1. Therefore, the solution with the correct initial values is

y(t) = e−t − e−3t.

Similarly, we can solve an initial value problem like

y′′ + 4y′ + 5y = 0 , y(0) = 1 , y′(0) = −1

by taking y to be a linear combination

y(t) = c1y1(t) + c2y2(t) = c1e
−t cos 2t+ c2e

−t sin 2t,

and proceeding as above (differentiate y, set t = 0, solve the system of equations for c1 and c2...).
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Second Order Homogeneous Equations: Repeated Integration Method (reading). There is one
special case where the exponential ansatz method fails to produce a general solution of a given second order
equation: when the auxiliary equation has a repeated root.

For example, consider the equation
y′′ + 4y′ + 4y = 0

In this case the auxiliary equation is
λ2 + 4λ+ 4 = 0,

which factors as
(λ+ 2)2 = 0,

so the equation has a repeated root,
λ = −2.

As a result, the exponential ansatz method produces only one solution,

y1 = e−2t.

To find a second solution of the equation, we need a new method.

The idea behind the second method is to rewrite the equation using operator notation:

(D2 + 4D + 4)y = 0.

We can then factor the operator on the left hand side:

D2 + 4D + 4 = (D + 2)2.

Now, you should immediately be suspicious here, because we have seen in 183 that the ordinary algebra
we’re used to doesn’t necessarily apply to operators. For example, matrices can be thought of as operators
on vectors, and we know that matrix multiplication is not commutative:

AB ̸= BA

One consequence of this is that the usual binomial formula is invalid for matrices (and other kinds of operators
as well). Indeed,

(A+B)2 = (A+B)(A+B) = A(A+B) +B(A+B) = A2 +AB +BA+B2

and this is not equal to
A2 + 2AB +B2

unless the two matrices commute (i.e. AB = BA).

Fortunately, a similar issue does not appear here. Indeed,

(2D)y = 2(Dy) = 2y′ = (2y)′ = D(2y) = (D2)y,

so the operators 2D and D2 are equal, and we can conclude that

(D + 2)2 = D2 + 2D +D2 + 22 = D2 + 4D + 4

Note that this would be invalid for second order operators with nonconstant coefficients! For example,

(D2 + 2tD + t2)y = y′′ + 2ty′ + t2y

but on the other hand

(D+ t)(D+ t)y = (D+ t)(y′ + ty) = y′′ + (ty)′ + ty′ + t2y = y′′ + y+ ty′ + ty′ + t2y = y′′ + 2ty′ + (1+ t2)y.

So we are using something very special about constant coefficient operators, when we factor like this.

Returning to the problem at hand, we now see that it is valid to replace the equation

(D2 + 4D + 4)y = 0

with the equation
(D + 2)(D + 2)y = 0.

This is helpful, because if we make the substitution

(D + 2)y = u
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then we are left with a first order equation,

(D + 2)u = 0

which we know how to solve!

Namely, if we convert back from operator notation we get

du

dt
+ 2u = 0

and this is a separable equation, whose solution we know:2

u = c2e
−2t.

Substituting into the equation

(D + 2)y = u,

we obtain

y′ + 2y = c1e
−2t

and this is a first order linear equation, which can be solved using integrating factors!

Multiplying by the integrating factor J = e2t, and proceeding with the standard method, we obtain

e2ty′ + 2e2ty = e2te−2tc1 = c1

d

dt

[
e2ty

]
= c1

e2ty = c1t+ c2

y = (c1t+ c2)e
−2t = c1te

−2t + c2e
−2t

If you work this out in complete generality, you will find that in the case of a repeated root, the equation

(D + λ)(D + λ)y = 0

has the general solution

y = c1te
λt + c2e

λt.

The same method above can be applied to arbitrary second order equations with constant coefficients - this
method is referred to as repeated integration. In general, to solve an equation

(D2 + pD + q)y = 0,

we factor the right hand side,

(D − λ1)(D − λ2)y = 0

and then make the substitution

(D − λ2)y = u.

This leaves us with the equation

(D − λ1)u = 0.

We can then solve for u and v using our standard techniques for solving first order equations (separating the
variables, and integrating factors). If you carry this out you will find that the solutions are

u = c1e
λ1t

and (if the roots are distinct),

y = c1e
λ1t + c2e

λ2t.

This derivation confirms the validity of the exponential ansatz method - it always produces the most general
solution possible!

2You’ll see why we’re calling the constant of integration c2 in a second.
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Damped Oscillators. We have seen how to solve linear equations with constant coefficients, but the
solution was rather unmotivated - we have not explained how such an equation would come up in practice.
So, it is worth introducing some physical examples which you can have in mind when thinking about second
order linear equations.

For the first example, consider a mass hanging on a spring. The mass has an equilibrium position, in which
it is at rest - let y denote the vertical displacement from this equilibrium position. Then combining Newton’s
law for the force acting on an object of mass m,

F = ma = my′′

with Hooke’s law for the force exerted by a spring,

F = −ky

we see that y(t) satisfies the equation

m
d2y

dt2
+ ky = 0.

This homogeneous and we know how to solve it - the corresponding characteristic equation

mλ2 + k = 0

has purely imaginary roots

λ = ±i

√
k

m
= ±iω0,

so a fundamental pair of solutions is

y1(t) = Re
[
eiω0t

]
= cos(ω0t) and y2(t) = Im

[
eiω0t

]
= sin(ω0t),

and the general solution is
y(t) = a cos(ω0t) + b sin(ω0t).

The constant ω0 is called the natural frequency of the mass-spring system.

Sometimes it is nice to write the solution y(t) in phase-shifted form

y(t) = A cos(ω0t− ϕ).

In this context, A is called the amplitude of the oscillation, and ϕ is called the phase shift.

To bring the solution into phase-shifted form, we first make the substitution

(1) a = A cosϕ , b = A sinϕ,

or equivalently we draw a triangle:

a

b

ϕ

A

We then apply the angle subtraction formula, cos(x− y) = cosx cos y + sinx sin y:

y(t) = A cos(ω0t) cos(ϕ) +A sin(ω0t) sin(ϕ) = A cos(ω0t− ϕ)

Another method is to write y(t) as the real part of a complex function,

(a− bi)eiω0t = (a− bi)(cosω0 + i sinω0) = (a cosω0t+ b sinω0t) + i(−b cos(ω0t) + a sin(ω0t)).

Making the same subsitution as before, we have

a− bi = A cosϕ− iA sinϕ = Ae−iϕ

and therefore
(a− bi)eiω0t = Ae−iϕeiω0t = Aei(ω0t−ϕ).

Equating real parts gives us

a cosω0t+ b sinω0t = Re[Aei(ω0t−ϕ)] = A cos(ω0t− ϕ).
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Unfortunately, a sinusoidal solution is not physically realistic - the energy of an actual spring would be
dissipated gradually in the form of heat, and the spring would eventually come back to rest at its equilibrium
position. This effect can be modeled3 by introducing a damping force which resists the velocity of the spring,
rather than its displacement from equilibrium. Adding a damping force leads to an equation of the form

m
d2y

dt2
+ l

dy

dt
+ ky = 0,

where m, l, and k are positive constants.

In the damped case, the characteristic equation

mλ2 + lλ+ k = 0

has two roots

λ =
−l ±

√
l2 − 4mk

2m
= −b±

√
b2 − ω2

0 ,

where

b =
l

2m
and ω0 =

√
k

m

Note that the roots may be either real or complex, depending on whether b2 − ω2
0 is positive or negative.

In the real case (b2 > ω2
0), the system is said to be overdamped, and the corresponding differrential equation

has two real exponential solutions,

y1 = er1t and y2 = er2t.

Since b and ω2
0 are positive, we have

±
√
b2 − ω2

0 <
√
b2 = b,

which implies that

−b±
√

b2 − ω2
0 < −b+ b = 0.

Therefore, the roots r1 and r2 are both negative, and the corresponding exponential solutions are decreasing.

In the complex case (b2 < ω2
0), the system is said to be underdamped, and the exponential solutions are

y = e(r+iω)t , y = e(r−iω)t

where

r = −b and ω =
√
ω2
0 − b2.

The real and imaginary parts of the complex solutions are a fundamental pair of solutions,

y1 = ert cos (ωt) and y2 = ert sin (ωt) .

3In reality, the damping of a mass-spring system is nonlinear - the model we are describing is only an approximation, and

this approximation is only accurate when the system is very close to its equilibrium state.
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To graph these functions, one draws an “exponential envelope” y = ±ert, together with a sinusoid oscillating
between the upper and lower boundaries of the envelope:

1 2 3 4 5

−1

−0.5

0.5

1

Note that both solutions still decay to 0 exponentially (since r = −b < 0), but now they also oscillate as
they decay. Also note that damping reduces the frequency of the oscillation.

There is also a third case - if b2 = ω2
0 , then the characteristic equation has a repeated root and the oscillator

is said to be critically damped. In this case, a fundamental pair of solutions is

y1 = ert , y2 = tert,

where

r = −b < 0.

Note that both of these solutions decay to zero as well.

With this model in mind, we can also understand the physical meaning of an inhomogeneous equation

my′′ + ly′ + ky = f(t).

Such an equation describes a mass on a spring which is subject to an additional external force f(t).

Any physical system which can be accurately modeled by an equation of this form is called a damped oscillator
(in the case l > 0) or a harmonic oscillator (in the case l = 0).

Damped oscillators need not bemechanical systems. For example, consider a circuit with a resistor, capacitor,
inductor, and power source:

−
+V (t)

− +
R

−

+

C

−+
L

A circuit like this can be modeled by

L
dI

dt
+RI +

Q

C
= V (t),

where R, L, C denote resistance, inductance, and capacitance respectively, I(t) is the current flowing through
the circuit, Q(t) is the charge built up on the capacitor, and V (t) is the voltage supplied by the power source.
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Differentiating this equation gives an equation for the current,

L
d2I

dt2
+R

dI

dt
+

I

C
= V ′(t).

From a mathematical point of view, this electrical system is completely equivalent to the mechanical mass-
spring system, because the two systems can be modeled by equations of exactly the same form.

We would like to apply the physical intuition provided by either of these models to our understanding of
second order linear equations, but of course there is no reason prefer one model over any other. For this
reason, it is common to visualize a damped oscillator using the following “black box” diagram:

f(t) y(t)

In this picture, f(t) represents the input to our physical system (e.g. external forces in the mass-spring case,
or the derivative of voltage in the case of an RLC circuit), and y(t) represents the response to that input.
To find the response, we must solve an equation of the form

my′′(t) + ly′(t) + ky(t) = f(t),

subject to whatever initial conditions happen to be physically reasonable.

Likewise, when we solve an inhomogeneous differential equation, we can always frame our solution as the
answer to a physical-sounding question: how does the system respond to a particular given input? We will be
particularly interested in this question in two special cases: first, when the input is a sinusoid of a particular
frequency, and second, when the input is a very brief impulse. We will investigate both cases in detail in the
coming weeks, and these investigations will lead us to some very interesting mathematical ideas!
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