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Recollection on conditional probability

Remember that the conditional probability of E given F is

P(E | F ) =
P(E ∩ F )

P(F )
.

Equivalently, we have

P(E ∩ F ) = P(F ) · P(E | F ).



Law of total probability

Suppose we want to compute P(E ). For another event F , we have

P(E ) = P(E ∩ F ) + P(E ∩ F c)

= P(E | F ) · P(F ) + P(E | F c) · P(F c).

Example: D = “have disease”, + = “test positive”. Suppose
P(D) = p, P(+ | D) = 0.9, and P(+ | Dc) = 0.1. We have

P(+) = P(+ | D) · P(D) + P(+ | Dc) · P(Dc)

= 0.9p + 0.1(1− p) = 0.1 + 0.8p.

What we really care about is P(D | +), which is

P(D ∩+)

P(+)
=

P(+ | D) · P(D)

P(+)
=

0.9p

0.9p + 0.1(1− p)
.
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Bayes’ rule

Bayes’ rule: By P(B | A) · P(A) = P(A ∩ B) = P(A | B) · P(B),
we have

P(A | B) =
P(B | A)

P(B)
P(A).

Interpretation: Start with estimate P(A) for A. After receiving new
information, perform a Bayesian update to restrict the sample
space to B.

I P(B|A)
P(B) measures how strong the evidence is

I If P(B | A) = 0, A and B are mutually exclusive.

I We have P(B|A)
P(B) ≤

1
P(A) , with equality if and only if

P(A ∩ B) = P(B).
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Bayesian updating

Draw a card at random from a deck. Define the events

A = {card is ace of spades}
B = {suit of cards is spades}.

To start, we know that P(A) = 1
52 . If we now know that B

occurred, we may update by

P(A | B) =
P(B | A)

P(B)
P(A) =

1

1/4
· 1

52
=

1

13
.

We may update as further information emerges about the card.
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Bayesian updating in the real world...

We can assign probabilites to events which have not yet happened:

P(Biden wins election)

P(Cubs win the World Series)

P(stock prices will go up this year).

According to Thomas Bayes:

P(A) := {value of right to get $1 if event occurs}.

This creates philosophical questions:

I Does this “value” have a well-defined price?

I How is P(A) defined when there are no enforceable financial
contracts?

I Can we use this interpretation (and Bayes’ rule) in everyday
reasoning?
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Independent events

Events E and F are independent if P(E ∩ F ) = P(E )P(F ).

I Equivalent formulation: P(E | F ) = P(E )

I Equivalent formulation: P(F | E ) = P(F )

Toss two coins with sample space {(H,H), (H,T ), (T ,H), (T ,T )}.
I {first coin H} and {second coin H} are independent

I {first coin H} and {odd number of H} are independent

Probability of each event is 1
2 , and probability of both is 1

4 .



Indpendence of multiple events

Events E1, . . . ,En are independent if for each
{i1, . . . , ik} ⊂ {1, . . . , n} we have

P
(
Ei1 ∩ · · · ∩ Eik

)
= P(Ei1)P(Ei2) · · ·P(Eik ).

Implies statements like P(E1 ∩ E2 | E3 ∩ E4 ∩ E5) = P(E1 ∩ E2).

Does pairwise independence imply independence?

I No: Consider {first coin H}, {second coin H},
{odd number of H}



Indpendence of multiple events

Events E1, . . . ,En are independent if for each
{i1, . . . , ik} ⊂ {1, . . . , n} we have

P
(
Ei1 ∩ · · · ∩ Eik

)
= P(Ei1)P(Ei2) · · ·P(Eik ).

Implies statements like P(E1 ∩ E2 | E3 ∩ E4 ∩ E5) = P(E1 ∩ E2).

Does pairwise independence imply independence?

I No: Consider {first coin H}, {second coin H},
{odd number of H}



Indpendence of multiple events

Events E1, . . . ,En are independent if for each
{i1, . . . , ik} ⊂ {1, . . . , n} we have

P
(
Ei1 ∩ · · · ∩ Eik

)
= P(Ei1)P(Ei2) · · ·P(Eik ).

Implies statements like P(E1 ∩ E2 | E3 ∩ E4 ∩ E5) = P(E1 ∩ E2).

Does pairwise independence imply independence?

I No: Consider {first coin H}, {second coin H},
{odd number of H}



Indpendence: examples

Shuffle 4 cards labeled 1, 2, 3, 4. Let

Ei ,j = {card i comes before card j}.

Is E1,2 independent of E3,4?

Is E1,2 independent of E1,3?



Indpendence: examples

What is P(E1,2 | E1,3)?

What is P(E1,7 | E1,2 ∩ E1,3 ∩ · · · ∩ E1,6)?
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