Lecture 5: Bayes' rule and independence Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago

Lecture Outline

Bayes' rule

Independence

Independence

Remember that the conditional probability of E given F is

$$\mathbb{P}(E \mid F) = rac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}.$$

Equivalently, we have

$$\mathbb{P}(E \cap F) = \mathbb{P}(F) \cdot \mathbb{P}(E \mid F).$$

Law of total probability

Suppose we want to compute $\mathbb{P}(E)$. For another event F, we have

$$\mathbb{P}(E) = \mathbb{P}(E \cap F) + \mathbb{P}(E \cap F^c)$$
$$= \mathbb{P}(E \mid F) \cdot \mathbb{P}(F) + \mathbb{P}(E \mid F^c) \cdot \mathbb{P}(F^c).$$

Law of total probability

Suppose we want to compute $\mathbb{P}(E)$. For another event F, we have

$$\mathbb{P}(E) = \mathbb{P}(E \cap F) + \mathbb{P}(E \cap F^c)$$
$$= \mathbb{P}(E \mid F) \cdot \mathbb{P}(F) + \mathbb{P}(E \mid F^c) \cdot \mathbb{P}(F^c).$$

Example: D = "have disease", + = "test positive". Suppose $\mathbb{P}(D) = p$, $\mathbb{P}(+ \mid D) = 0.9$, and $\mathbb{P}(+ \mid D^c) = 0.1$. We have

$$\mathbb{P}(+) = \mathbb{P}(+ \mid D) \cdot \mathbb{P}(D) + \mathbb{P}(+ \mid D^c) \cdot \mathbb{P}(D^c)$$

= 0.9p + 0.1(1 - p) = 0.1 + 0.8p.

What we really care about is $\mathbb{P}(D \mid +)$, which is

$$\frac{\mathbb{P}(D\cap +)}{\mathbb{P}(+)} = \frac{\mathbb{P}(+\mid D) \cdot \mathbb{P}(D)}{\mathbb{P}(+)} = \frac{0.9p}{0.9p + 0.1(1-p)}.$$

Bayes' rule: By $\mathbb{P}(B \mid A) \cdot \mathbb{P}(A) = \mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \cdot \mathbb{P}(B)$, we have

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)}\mathbb{P}(A).$$

Bayes' rule: By $\mathbb{P}(B \mid A) \cdot \mathbb{P}(A) = \mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \cdot \mathbb{P}(B)$, we have

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)}\mathbb{P}(A).$$

Interpretation: Start with estimate $\mathbb{P}(A)$ for A. After receiving new information, perform a **Bayesian update** to restrict the sample space to B.

Draw a card at random from a deck. Define the events

$$A = \{ card is ace of spades \}$$
$$B = \{ suit of cards is spades \}.$$

To start, we know that $\mathbb{P}(A) = \frac{1}{52}$. If we now know that *B* occurred, we may update by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)} \mathbb{P}(A) = \frac{1}{1/4} \cdot \frac{1}{52} = \frac{1}{13}.$$

We may update as further information emerges about the card.

Draw a card at random from a deck. Define the events

$$A = \{ card is ace of spades \}$$
$$B = \{ suit of cards is spades \}.$$

To start, we know that $\mathbb{P}(A) = \frac{1}{52}$. If we now know that *B* occurred, we may update by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)} \mathbb{P}(A) = \frac{1}{1/4} \cdot \frac{1}{52} = \frac{1}{13}.$$

We may update as further information emerges about the card.

Bayesian updating in the real world...

We can assign probabilites to events which have not yet happened:

𝒫(Biden wins election)𝒫(Cubs win the World Series)𝒫(stock prices will go up this year).

According to Thomas Bayes:

 $\mathbb{P}(A) := \{ \text{value of right to get } \$1 \text{ if event occurs} \}.$

This creates philosophical questions:

- Does this "value" have a well-defined price?
- ► How is P(A) defined when there are no enforceable financial contracts?
- Can we use this interpretation (and Bayes' rule) in everyday reasoning?

Independence

Events *E* and *F* are **independent** if $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$.

- Equivalent formulation: $\mathbb{P}(E \mid F) = \mathbb{P}(E)$
- Equivalent formulation: $\mathbb{P}(F \mid E) = \mathbb{P}(F)$

Toss two coins with sample space {(H, H), (H, T), (T, H), (T, T)}.
{first coin H} and {second coin H} are independent
{first coin H} and {odd number of H} are independent
Probability of each event is ¹/₂, and probability of both is ¹/₄.

Events E_1, \ldots, E_n are **independent** if for each $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ we have $\mathbb{P}\Big(E_{i_1} \cap \cdots \cap E_{i_k}\Big) = \mathbb{P}(E_{i_1})\mathbb{P}(E_{i_2}) \cdots \mathbb{P}(E_{i_k}).$

Implies statements like $\mathbb{P}(E_1 \cap E_2 \mid E_3 \cap E_4 \cap E_5) = \mathbb{P}(E_1 \cap E_2).$

Events E_1, \ldots, E_n are **independent** if for each $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ we have $\mathbb{P}\Big(E_{i_1} \cap \cdots \cap E_{i_k}\Big) = \mathbb{P}(E_{i_1})\mathbb{P}(E_{i_2}) \cdots \mathbb{P}(E_{i_k}).$

Implies statements like $\mathbb{P}(E_1 \cap E_2 \mid E_3 \cap E_4 \cap E_5) = \mathbb{P}(E_1 \cap E_2)$.

Does pairwise independence imply independence?

Events E_1, \ldots, E_n are **independent** if for each $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ we have $\mathbb{P}(E_{i_1} \cap \cdots \cap E_{i_k}) = \mathbb{P}(E_{i_1})\mathbb{P}(E_{i_2}) \cdots \mathbb{P}(E_{i_k}).$

Implies statements like $\mathbb{P}(E_1 \cap E_2 \mid E_3 \cap E_4 \cap E_5) = \mathbb{P}(E_1 \cap E_2)$.

Does pairwise independence imply independence?

No: Consider {first coin H}, {second coin H}, {odd number of H} Shuffle 4 cards labeled 1, 2, 3, 4. Let

 $E_{i,j} = \{ \text{card } i \text{ comes before card } j \}.$

Is $E_{1,2}$ independent of $E_{3,4}$?

Is $E_{1,2}$ independent of $E_{1,3}$?

Indpendence: examples

What is $\mathbb{P}(E_{1,2} | E_{1,3})$?

What is $\mathbb{P}(E_{1,7} | E_{1,2} \cap E_{1,3} \cap \cdots \cap E_{1,6})$?