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Where are we?

Geometric random variables

Negative binomial random variables

Example



Geometric random variables

Consider independent tosses of a coin which is heads with
probability p. A geometric random variable with parameter p is
the number of tosses before the first appearance of heads.

We have that
P(X = k) = p(1− p)k−1.



Properties of geometric random variables

For a geometric random variable, we have

P(X = k) = p(1− p)k−1.

What is E[X ]?

By definition, we have

E[X ] =
∞∑
k=1

kp(1− p)k−1.

Notice that

E[X ]− 1 =
∞∑
k=1

kp(1− p)k−1 −
∞∑
k=1

p(1− p)k−1

=
∞∑
k=1

(k − 1)p(1− p)k−1 =
∞∑
j=1

jp(1− p)j = (1− p)E[X ].

We can solve to find E[X ] = 1/p.



Properties of geometric random variables

For a geometric random variable, we have

P(X = k) = p(1− p)k−1.

What is Var(X )?

Notice that

E[(X−1)2] =
∞∑
k=1

(k−1)2p(1−p)k−1 =
∞∑
j=1

j2p(1−p)j = (1−p)E[X 2].

We find that

pE[X 2] = 2E[X ]− 1 =
2

p
− 1 =⇒ E[X 2] =

2

p2
− 1

p
.

We conclude that Var(X ) = E[X 2]− E[X ]2 = 1−p
p .
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Negative binomial random variables

Consider independent tosses of a coin which is heads with
probability p. A negative binomial random variable with
parameters r and p is the toss number until(and include) the rth
head.

To get the rth head on the kth toss, we need exactly r − 1 heads
among the first k − 1 tosses. There are

(k−1
r−1
)

ways to choose
these tosses, implying

P(X = k) =

(
k − 1

r − 1

)
pr−1(1− p)k−rp.



Negative binomial properties

Consider independent tosses of a coin which is heads with
probability p. A negative binomial random variable with
parameters r and p is the toss number of the r th head.

What is E[X ]? Notice that

X = X1 + X2 + · · ·+ Xr ,

where Xi is geometric with parameter p. This implies that

E[X ] = E[X1] + · · ·+ E[Xr ] =
r

p
.



Negative binomial properties

Consider independent tosses of a coin which is heads with
probability p. A negative binomial random variable with
parameters r and p is the toss number of the r th head.

What is Var(X )? Notice that X = X1 + X2 + · · ·+ Xr where Xi is
geometric with parameter p. This implies that

E[X 2] = E

 r∑
i ,j=1

XiXj

 =
r∑

i=1

E[X 2
i ] + 2

∑
1≤i<j≤r

E[XiXj ]

= r
2− p

p2
+ r(r − 1)

1

p2
.

We find

Var(X ) = E[X 2]− E[X ]2 = r
2− p

p2
− r

p2
=

r(1− p)

p2
.



Alternative to calculate variance

Consider

E
[
X k
]

=
∞∑
n=r

nk
(

n − 1
r − 1

)
pr (1− p)n−r

=
r

p

∞∑
n=r

nk−1
(

n
r

)
pr+1(1− p)n−r

(let m = n + 1, s = r + 1)

=
r

p

∞∑
m=s

(m − 1)k−1
(

m − 1
s − 1

)
ps(1− p)m−s

=
r

p
E
[
(Y − 1)k−1

]
where Y is a negative binomial random variable with parameters
r + 1, p. Now let k = 2.



Comparison of four discrete r.v.

Given we have an independent Bernoulli test in each time-slot.

I Binomial r.v. is the total count of success within some interval

I Poisson r.v. is limit of binomial distribution given mean of count
of success fixed.

I Geometric r.v. is count of test until the first success

I Negative Binomial r.v. is the count of test until several success.
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Barking Dog

A dog barks with probability 0.01 each minute.

I How many times do we expect the dog to bark between noon
and midnight?

I It will be a Binomial r.v..

I What is the probability the dog is quiet between noon and 2pm
and barks at exactly 2pm?

I It will be a geometric r.v..

I What is the probability the fifth bark since noon is at midnight?

I It will be a negative binomial r.v..
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Barking Dog

A dog barks with probability 0.01 each minute.

How many minutes do I expect to wait until the fifth bark?

It will be expectation of negative binomial r.v..

Approximate the probability there are exactly 5 barks between
noon and midnight.
It will be Poisson r.v..
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