Lecture 6: Euler Approximation

Zhongjian Wang*

Abstract

Backward and forward representation, strong and weak convergence of Euler ap-
proximation.

1 Backward and Forward Representations

Let X(t) be a diffusion process (solution of SDE) with drift a(¢, x), diffusion b(¢, x):
dXt = adt + deta

consider the conditional expectation (s < ¢):

B0 =) = [ 1wps.it.) dy (L.1)

where p(s,x;t,y) is the transition probability density function from (s,z) to (t,y). As a
function of (s, x), p satisfies the backward equation:

1
ps + §b2(s, Z)Pez + a(s, x)p, = 0. (1.2)

Hence u(s,z) = E(f(X;)|Xs = x) solves (1.2) with final condition u(t,z) = f(z).
For the forward representation, consider the Autonomous case, a = a(x), b = b(x).
Then p('sata 937?/) = p(t - 5T, y)7 Ps = =D,
1
D= §b2(9c)pm + a(2)ps, t > s, (1.3)

p(t;z,y) = 6(y — x), as t — 0+. The transition probability density becomes fundamental
solution of parabolic equation (1.3). As a function of (¢, x),

U(tv l‘) = E(f(Xt)|Xs = ZE), (14)

solves:

1
v = §b2(x)vm + a(z)vy, (1.5)
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with initial data v(s,z) = f(x).
Eq. (1.4) is a probabilistic representation formula of PDE (1.5). It can be generalized to
include a lower order (potential) term as in Eqn:

1
wy = §b2(m)wm + a(z)w, + V(z)w, t >0, (1.6)

initial data: w(0,x) = f(x). The Feynmann-Kac formula is:

u(t.a) = B [ess [ VX arscxe)|. (17

If the diffusion b(z) = 0, F-K formula reduces to a solution formula of first order hyperbolic
eqn by the method of characteristics.
To derive (1.7), let:

i = E oo [ vexenans ).

a linear bounded (nonnegative) operator on the space of bounded continuous functions.
Note:

t
exp{ / X,)ds} =1+ / V(X,)ds + oft),
0
as t — 0+. We have for any f(x) in the domain of T}:

M _ %(E[f(Xt)efgv(Xs)ds]—f($)>

1

— L) - @)+ FEUC) [ VXad

= (0*(2) foe/2 + al2) fo) + V(@) ] (1.8)

We have used (1.3) for the limit of first term.
To generalize F-K to nonautonomous case, treat t as a parameter,

dX = a(t, X)ds + b(th", XEYdW,
dtt* = —ds, (1.9)

X" = x, t§" = t, symmetrically extending a, b: a(—7,z) = a(r,z) ete. View (1.9) as
a diffusion process on (t,x) € R?* with time s. Egs (1.9) are autonomous, and define a
Markov process (t4%, X%* P). We then apply F-K (1.7). The result is:

w(t,z) = BEf(X}") exp{ {/Ot V(t—s,XM)ds|}, (1.10)

solves eqn:
1
wy, = §bQ(t, L)Wy + alt, x)w, + V (¢, z)w, (1.11)

w(0,z) = f(x).

All results generalize to higher space dimensions.

2



2 Euler Method: Order of Convergence
SDE:
dXt = (l(t, Xt)dt + b(t, Xt>th, te (O, T], (212)

with initial value Xy at ¢ = 0. Discrete times 0 =g < t;1 <tg < --- < t, < --- <ty =1T.
Denote A, = t, 11 — t,, 6 = max A,,.
Euler approximation:

Yn+1 = Yn + a(tn; Yn)An + b<tn7 Yn)(th+1 - th)a (213)

with Yy = Xo.

Y,, is A, measurable.

Connecting the adjacent discrete values Y,, by straight lines form a continuous function
Y (t). Pathwise measure of approximation is:

e = E(1X(T) =Y(T))), (2.14)

reduces to deterministic absolute error at ¢ = T if noise is absent. In actual computation,
suppose we have N solutions Y;(7T') from N realizations of BM, then € is approximated by:

e= =3 1Xu(T)  YilT)). (2.15)

It is an amusing fact that ¢ ~ O(§'/?) in the stochastic case while € ~ O(6) in the deter-
ministic case. This is analyzed below.

2.1 Strong Convergence/Consistency

Strong Convergence if:

lim E(|X(T) = ¥5(T)[) = 0. (2.16)
Strong Convergence with order v > 0:
E(X(T) - Y5(T)|) < C&7, (2.17)

for any 0 € [0, do], dp > 0.
Strong Consistency of Discrete Approzimation:
Y(S o Y6
B (IBC25 2 40) — altn, KR < cl0) 50, 219

and:

1

B Vi = ¥ = BO = YS1A0) — bt Y)AW, P
< ¢(6) — 0. (2.19)

for all fixed Y? =y, n=0,1,2,---.

For Euler, strong consistency holds with ¢(d) = 0.
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2.2 Convergence

Consider the autonomous SDE:

dXt = G(Xt)dt + b(Xt)th,

(2.20)

Theorem 2.1 A strongly consistent equidistant time discrete approzimation Y,? of (2.20)
with Y°(0) = Xy converges strongly to X. In particular, Euler method converges strongly

with order 1/2.

Sketch of Proof:

Z(t) = sup B(|Y; — X(s)*),

s€[0,t]

ns = max{n : t, < s}.

ns—1

Z2(t) = swp Bl Y (Y, - P - / Ca(X,)ds - / B )W

+ E[!Z(Yfﬂ—Y — B(Y,) = Y| Ar,) = (Y,

tns
+ |/ ) — a(X,) dr|?] +E|/
+ y/ X,)ds[?] +E|/ X,)dW, ]}

by strong consistency and Lipschitz condition:

Z(t) < O, /t Z(s)ds + Cs(8 + ¢(9)),

the last term of (2.21) contributes O(J).
Gronwall inequality:

Z(t) < Cu(8 + ¢(9)),

or:

E(|Y°(T) — X(T)|) < Cs+/5 + ¢(6),

strong convergence. For Euler, ¢(§) =0, v = 1/2.

AW,

X,) dW, ]

(2.21)

(2.22)

(2.23)

(2.24)



3 Weak Consistency: Definition and Examples
A discrete SDE approximation Y?°(t) is called converging weakly to X (t) at t = T if:

lim |E(g(X(T))) = E(g(Y*(T)))] =0, (3.25)
for any g € C, C a class of smooth test functions. One example of C is all polynomials,
then (3.25) is same as convergence of all moments of solutions. As before, discrete times
O=ti<ti<ta< - <t, < ---<ty=T, An:tn+1—tn,5:maXAn.

Convergence is order g > 0 if:

[E(9(X(T))) = BE(g(Y*(T)))| < C&°, (3.26)

for small 0.
Later we will see that Euler method is weakly convergent of order § = 1, while it is order
1/2 strong convergent (pathwise).

The discrete approximation is weakly consistent if

Yo, —YS ?
E ‘E (%mtn) —a(t,, Y))| | <) =0, (3.27)
same as in strong consistency, and:
1 2
B || (5 0 = Y0214, ) - B )
< ¢(9) — 0. (3.28)

for all fixed Y? =y, n=0,1,2,---.
For Euler, weak consistency holds. Moreover, some modified FEuler like:

Yir1 = Yo+ alty, o) Ay + b(ta, Yn)én (A,)Y2, (3.29)
where &, independent two point r.v., P(§, = £1) = 1/2, is weakly convergent, not strongly
convergent.

4 Consistency implies Convergence
Consider the autonomous SDE:
dX, = a(X,)dt + b(X,)dW,, (4.30)

a, b, smooth, with polynomial growth.



Theorem 4.1 Consider equidistant time weakly consistent discrete approxvimation Y2 of

(4.50) with Y°(0) = Xy so that:

E(max |Y,; ") < K (1 + E(|Xo[*)),
forq=1,2,---, and:

E(Y = Y71 < e(0)An, () = o(9),
for anyn =0,1,2,---. Then Y’ converges weakly to X (t).

Sketch of Proof: Write Y (t) = Y?(t).
Use fact:

u(s, z) = E(g(Xr)|Xs = ),
solves backward equation:

2
us+Lu:us+aum+§um:O,

and:
uw(T,x) = g(x).

Denote by X, solution of:

¢ ¢
X5 = a / a(X5)dr + / b(XP) AW,
Ito formula and (4.34) give:
B(u(tarr, Xy) = ulta, 2)]Ay) = 0,

By eqns (4.33)-(4.35), write:
H = |E(g(Y(T))) — E(g(X(T)))l
|

= ‘E( u(tn+1,Yn+1) - u(tnayn))|

By (4.37):
H = B [ultusr, Yosr) — ultn, Y)
—(ultnsr, Xeoy") = ultn, Xor ™))
= |E(Z[ (n+1’Yn+1) (n+1, )
—(w(tny1, X ") = ultnga, Ya))))l
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(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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Taylor expand in x:

H = [EQ wl(Yan = Ya) = (X7 = Vo))

1
+§um[(yn+1 - Yn>2 - (th,Yn - Yn)2]

tn+1

+O(|Yn+1 - Yn|3 + |Xthn - Yn|3))|

tn+1

Uy, Uy evaluated at (41, Y).

(4.39)

Higher Moments Estimate of SDE (augmented, Theorem 4.5.4 in KL’s book)
Suppose that conditions in lecture 5 hold and that

E (|1X5™) < o0
for some integer n > 1. Then the solution X, satisfies
E(|1X7) < (1+ B (|X ™)) eS¢t
and

E (|X: — Xeo|™) < D (14 E (|X5 ™)) (t — to)" 510

H < C E(|u[E((Yars — Vo) = (X207 = Y,)|A,)]

tnt1
1
+ §|Um||E((Yn+l - Yn)2 - (Xf:j}l/" - Yn)2|An)|
+0(8%% + 612/ c(6))
O GE(BCEE=E0 4, ~ alty, V)P

E1/2(|E(M|An) — 0 (tn, Ya)[?)

O(6%2 + 62/ c(6))
C Y 6/c(0) + 057 + 6'2,/c(5))
O(\/c(8) + 6% +1/c(8)/5) — 0.

N+ + IN

(4.40)



