Lecture 3: Probability and equal likelihood Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago Distributive Principle

$$(E \cup F) \cap G = (E \cap G) \cup (F \cap G)$$
$$(E \cap F) \cup G = (E \cup G) \cap (F \cup G)$$

Poker hands example: note when counting hands we have already considered the overcount factor 5!.

Problems

Inclusion-Exclusion

Problems

Inclusion-Exclusion

Events of equal likelihood

Suppose a sample space S has N events. If each event is equally likely, what is the probability of each event?

• If each event has probability p, then $p \cdot N = 1$, so $p = \frac{1}{N}$

What is $\mathbb{P}(A)$ for a general subset $A \subset S$?

• A consists of |A| disjoint events, so the total probability is $\frac{|A|}{|S|}$.

Problems

Inclusion-Exclusion

What is the probability that the sum of two dice rolls is 3?

What is the probability that exactly 4 of 8 coin tosses are heads?

Roll 5 dice. What is the probability that exactly 2 of the dice show the number 1?

In a class of 60 students, what is the probability that none of them have student ID ending in 9?

Birthday paradox

In a room of N people, what is the probability that some two of them have the same birthday?

What is the smallest N for which this probability is above $\frac{1}{2}$?

Birthday paradox

In a room of N people, what is the probability that some two of them have the same birthday?

What is the smallest N for which this probability is above $\frac{1}{2}$?

 $\frac{365}{366} \frac{364}{366} \cdots \frac{366 - 22}{366} = 0.4937$ $\frac{365}{366} \frac{364}{366} \cdots \frac{366 - 36}{366} = 0.1521$

Problems

Inclusion-Exclusion

Principle of inclusion-exclusion

Suppose we roll 2 dice and get two numbers a and b. What is the probability that either a = b or a is even?

• Define $A = \{a = b\}$ and $B = \{a \text{ is even}\}$.

•
$$\mathbb{P}(A) = \frac{1}{6}$$
, $\mathbb{P}(B) = \frac{1}{2}$, and $\mathbb{P}(A \cap B) = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12}$

$$\blacktriangleright \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Principle of inclusion-exclusion

More generally, suppose we have events E_1, \ldots, E_n . Then, we have

$$\mathbb{P}\Big(E_1 \cup \cdots \cup E_n\Big) = \sum_{i=1}^n \mathbb{P}(E_i) - \sum_{i < j} \mathbb{P}(E_i \cap E_j) \\ + \sum_{i < j < k} \mathbb{P}(E_i \cap E_j \cap E_k) - \cdots \\ + (-1)^{n-1} \mathbb{P}(\bigcap_{i=1}^n E_i).$$

Derangements

Suppose a deck of n cards is shuffled. What is the probability that, after the shuffle, no card is in the same position?

Derangements

Suppose a deck of n cards is shuffled. What is the probability that, after the shuffle, no card is in the same position?

- Let E_i be the probability that card i is in position i after the shuffle.
- Because all orderings are equally likely, $\mathbb{P}(E_i) = \frac{1}{n}$.

► For any
$$i_1, \ldots, i_k$$
, $\mathbb{P}(E_{i_1} \cap \cdots \cap E_{i_k}) = \frac{(n-k)!}{n!}$.

Derangements

Suppose a deck of n cards is shuffled. What is the probability that, after the shuffle, no card is in the same position?

- Let E_i be the probability that card i is in position i after the shuffle.
- Because all orderings are equally likely, $\mathbb{P}(E_i) = \frac{1}{n}$.
- For any i_1, \ldots, i_k , $\mathbb{P}(E_{i_1} \cap \cdots \cap E_{i_k}) = \frac{(n-k)!}{n!}$.

In the principle of inclusion-exclusion, we have (ⁿ) such terms, which means

$$\mathbb{P}\Big(E_1 \cup \dots \cup E_n\Big) = \binom{n}{1} \cdot \frac{(n-1)!}{n!} - \binom{n}{2} \cdot \frac{(n-2)!}{n!} \\ + \binom{n}{3} \cdot \frac{(n-3)!}{n!} - \dots = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots$$

• The answer is $1 - \mathbb{P}(E_1 \cup \cdots \cup E_n) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots = \frac{1}{e}$.

Problems

Inclusion-Exclusion

What is the probability of getting a full house in poker? [A full house has 3 cards of one rank and 2 cards of another.]

What is the probability of getting a full house in poker? [A full house has 3 cards of one rank and 2 cards of another.]

- Answer is #{unordered distinct 5-card sequences giving a full house} #{unordered 5-card sequences}
- To get a full house, choose numbers and then suits: 13 · 12 · (⁴₃) · (⁴₂)
- Total number: $\binom{52}{5}$, giving $\frac{6}{4165}$.

What is the probability of getting a two pair hand in poker? [A two pair hand has 2 pairs of cards of the same rank and a 5th card of a different rank.]

What is the probability of getting a two pair hand in poker? [A two pair hand has 2 pairs of cards of the same rank and a 5th card of a different rank.]

 Answer is #{unordered distinct 5-card sequences giving two pair} #{unordered 5-card sequences}
To get two pair, choose numbers and then suits: ^{13·12}/₂ · 11 · (⁴₂) · (⁴₂) · (⁴₁)
Total number: (⁵²₅), giving ¹⁹⁸/₄₁₆₅.