Lecture 2: Stochastic Process, Brownian Motion.
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Abstract
Summary of Stochastic process and Brownian motion

1 Stochastic Processes

Sequence of r.v.’s X, Xy, -+, X, -+ occuring at discrete times t; < to--- <t, < --- is
called a discrete stochastic process, with joint distribution FXil,Xi2,~~-,X¢ja 1y =1,2,---
as its probability law.

Continuous Stochastic Process: X(t) = X(t,w), t € [0,1] or [0,00), over probability
space (€2, A, P), is a function of two variables, X : [0,1] x © — R, where X is a r.v. for
each t, for each w, we have a continuous sample path (realization/trajectory/configuration)
of the process.

e Quantities on time variability: u(t) = F(X(t)), o%(t) = Var(X(t)), covariance:
Cls, 1) = E((X(s) = u(s))(X () = u(?))),

for s # t.
Process with independent increment: X(¢;,1)—X(¢;), j =0,1,2,--- are independent

Gaussian Process: all joint distributions are Gaussian.

Standard Wiener Process (Brownian Motion): Gaussian process W(t), t > 0, with inde-
pendent increment, and:

W(0) =0w.p.l, E(W(t)) =0, Var(W(t) — W(s)) =t — s,
for all s € [0,¢].
B.M. Covariance: C(s,t) = min(s, ).

Stationary Process: all joint distributions are translation (along time) invariant.

Ornstein-Uhlenbeck Process: Gaussian process with X (0) unit Gaussian, E(X(t)) = 0,
covariance F(X,X,) = e 1 for s,t € R, v > 0.

e Note: B.M. Covariance: C(s,t) = min(s,t), not stationary. O-U stationary.
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2 Diffusion Process

Suppose joint distribution of X (¢) has density p(t1, x1; ta, xo; - -+ ; tg, xx), define conditional
probability:

P(X(tu1) € BIX(t) = 21 =1 n) =

fB p(tlaxla" tnaxnv n+1, Y )dy

fp<t17x17' tnaxru nt+1, Y )dy

for B any Borel set of R.

e Markov Process if:
P(X(tn_H) € B|X(tz) = I’Z‘,i =1: TL) = P(X(tn_H) € BlX(tn) = ZEn)
It means transition probability:

P(thxla"' 7tn717xnflvs7x;t7B) :P<S,X,t,B) :/ p(S,X,t,y)dy
B

e Chapman-Kolmogorov (C-K) equation:

p(s,z:t,y) = / p(s, @7, 2) plr, £, y) d,
Rl
fors<7t<t.

Egl. Wiener process: dX = dW

(y — x)?

1
p(s,x;t,y) = /—27T(t—8) eXp{_ 2(t—8)

Eg2. O-U: dX = —Xdt + dW (v = 1, proof can be found later in section 3)

2

1 ( —re —(t— s))2
p(87 Qf, ta y) - \/271_(1 — 672(t78)) p{ ( e,Q(t,S)) }7

Diffusion Process: Markov process with transition density is called diffusion process if
the following limits exist (Ve):

Jump:
1

lim / p(s, x5t y)dy =0,
tsstt— s |y—x|>€

) 1
lim
tstt— s

Drift:

/ |<€(y —x)p(s,2;t,y)dy = a(s, x),
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Diffusion:

. 1
lim
tsstt— s

/| (=t = (o).
Yy—x|s

e Note: diffusion process and Markov process defined in distribution sense, continuous
process is defined in strong sense. If a Markov process is defined by a continuous process
then it does not jump.

By analytic derivation, we can calculate them by:

a(s,7) = Tim —— E(X(t) - X(s)[X(s) = 2),

t—stt— 8

b?(s,z) = lim !

tsstt — 8

E((X(t) = X(s))*|X(s) = o).

a: drift coefficient, b: diffusion coefficient.
Wiener: (a,b) = (0,1), O-U: (a,b) = (—yx,/27). (Calculation in next part)

e If ¢ and b are moderately regular functions, p(s, z;t,y) satisfies Kolmogorov equation:
Forward:

1
pe + (alt,y)p), = §(b2(t, YD) gy,
Backward: .
Ps + G(S, x)px = —562(8, x)pmc

Forward equation is also called Fokker-Planck equation.

Egl. The transition density of Wiener obeys equations:

1
by = §pyy7 (Sa ZL‘) fixed

forward equation (¢t > s),

1
DPs = _§pxx7 (ta y) ﬁXQd

backward equation (s < t).

3 Calculating Drift and Diffusion

Egl. Brownian motion, using independence of increment, we see that:
E(X(t) - X(s)[X(s) = x) =0,

SO

a(s,7) = Tim —— E(X(t) — X(s)|X(s) = 2) = 0:

t—stt— 8



E((X(t) = X(5))’|X(s) =2) =t — s,

b2 (s, ) = lim+t
t—s — S

E((X(t) = X(s))*|X(s) = 2) =

Eg2. O-U process:
We start from the fact: 7 > 0, X(t+7) —e 7' X (7) is independent of (w : X(s),s < 7).
X and X (t+ 7) — e 7' X(7) are both Gaussian. Covariance (s < 7):

E[(X(t+71)—e V'X(T)X(s)] = CO(s,t+7)—e 1'C(s,7)
o= Yltr—s| _ = yt=ylr—s]
= 0. (3.1)

To find transition probability:

PX(t+71)e AX(r)=1) =
PX(t+71)—e VX(1) € A—e V"X (7)|X(7) = 2)
= P(X(t+7)—e V'X(1) € A—e V). (3.2)
So R.V. X(t+7) — e 7' X(7) is mean zero, Gaussian, and it variance can be calculated:
E[(X(t+7)—e 1'X())? =
E(X(t+7)—e V"X(1)X(t+7)]
=1-e27" (3.3)
(3.2) and (3.3) imply:

1 (- (y — xe™V=9))2
V27m(1 — e=27(=9)) P 2(1 — e 27t=)) ~

p(s,x;t,y) =

Calculate drift:
E(X(t)— X(s)|X(s) =) = BE[X(t) — e 51X (s)
+e =X (5) — X (5)| X (s) = 2]
= (e V=5l — 1)g, (3.4)

a(s,r) = —yz.
Calculate diffusion:

E((X () = X(5))*1X(s) = 2) = E[(X(t) = e "X (s) + (7707 = 1)a)?]
1= e V) (V) )22, (3.5)



Note 1 — e 27(7%) ~ 2v(t — s) while, (7779 —1)2 = ~42(t — 5)?, so

b (s, ) = lim+t
t—s — S

E((X(t) - X(5)*|X(s) = 2) = 2v.

Over small time interval [s, t], using drift-diffusion information, we see that O-U is related
to BM as (to leading order):

X(t) = X(s) = =7 X(s)(t = 5) + /29(W(t) = W(s)),
where W (t) denotes BM; or in differential form:

dX = —yXdt + /2vdW,
The term —vXdt physically means damping.

4 From Random Walk to Brownian Motion

Divide time interval [0, 1] into N equal length subintervals [t;,t;11], 4 = 0,1,--- , N. Con-
sider a walker making steps £+/6t, 0t = 1/N with probability 1/2 each, starting from
x = 0. In n steps, the walker’s location is:

S (ty) = \/Eix (4.6)

where X; are independent two point r.v’s taking 4+1 with equal probability. Define a
piecewise continuous function:

Sn(t) = Sy(tn), t € [tn, tns], n < N —1.

Sy has independent increment le, Xo\/6t ete for given subintervals, and in the
limit N — oo tends to a process with independent increment. Moreover:

E(Sy) =0, Var(Sy(t)) = ot [%] :

In the limit N — oo, Var(Sy(t)) — t. Applying Central Limit Theorem,V¢, the
approximate process Sy (t) converges in law to a process with independent increment, zero
mean, variance t, and Gaussian. So it is a BM.
Remark: Now you should see why in the ant problem, we do not scale the step linearly!

Using Sn(t) is a way to numerically construct BM as well. The X;’s are generated from
U0,1)as: X;=1ifU €10,1/2]; X; = —1,if U € (1/2,1].

Try the 2 line Matlab code to generate a BM sample path:

rand(’state’,0); N=1e4; dt=1/N;

w=sqrt(dt)*cumsum([0;rand(N,1)]); plot([0:dt:1],w);



An alternative way is to replace two point X;’s by i.i.d unit Gaussian r.v’s. The code
becomes:

randn(’state’,0); N=1e4; dt=1/N;

w=sqrt(dt)*cumsum([0;randn(N,1)]); plot([0:dt:1],w);
cumsum is a fast summation on vector input. Change the state number from 0 to 10 (or a
larger number if you are having fun !) to see different sample paths (see Figure 1).

Figure 1: Four Sample Paths of Numerical Approximation of Brownian Motion on [0,1].

BM sample path is almost surely continuous. Kolmogorov criterion:
E(IX(t) = X(s)|") < CJt — 5",
for a, b, C positive. For BM, a =4,b=1, C = 3.

Kolmogorov Continuity Theorem:

Let (S, d) be some complete metric space, and let X : [0, +00) x Q — S be a stochastic
process. Suppose that for all times T" > 0, there exist positive constants «, 3, K such that
E[d (X, X,)*] < K|t — s|"*? for all 0 < s5,t < T. Then there exists a modification X of X
that is a continuous process,



i.e. there exists a process X : [0, +00) x Q — S such that

e X is sample-continuous;
e for every time t > 0, P (Xt = X’t> = 1 (modification)

Furthermore, the paths of X are locally  -Hélder-continuous for every 0 < v < g

5 BM via Random Fourier Series
Consider defining

Z(t) = Z ©r ()Y,

by Y} coefficient ¢, (t) basis to be decided. For simplicity we assume Y} i.i.d.
Now we assign some normalization on closed interval I,

D o)) < oo, tel
k=1
> Eler®Yil? =) e < oo,
k=1 k=1
the last equality needs FY;*> = 1. In this way the summing sequence converges in Ly to

Z(t), vt e 1.
Let EY), = 0 then E[Z(t)] = 0. The covariance is

C(t,s) = Z er(t) i(s),

To match Z with BM, require:
min(t, s) = Z @i (t) er(s)-
k=1
Let I = [0, x|, fact:
ts 2 sin kt sin ks
in(t,s)=—4+-Yy — "
min(¢, s) + - Z 12

™
k>1

So consider taking Y;, i =1,2,--- be N(0,1)

t 2 sin kt
W(t) = BM = —Y, —E Y, 5.7
() \/%OJF\/; kR (5.7)




t € [0, 7], W(t) standard BM. By truncating the random Fourier series, we have a second
way to generate BM.

Remark: Fourier construction makes an Lo approximation to all BM path with finite num-
ber of random variable that is easy to generate. It is the starting point of a method called
Wiener Chaos Expansion (PCE, gPC, etc..) which applies in a field called Uncertainty
Quantification. The solution of stochastic partial differential equation like u; = Lu + dW;
is represented by orthogonal polynomials of Y.

6 Spectral Representation of stationary process

Consider stationary process, e.g. O-U. Covariance C(t,s) = C(t — s), C(-) even function,

and: ¥{a;} C R,
> ara;C(t —t;) = B(| Y anX (t)*) > 0,
kg k

C'(+) is nonnegative definite and symmetric. Bochner theorem:

() = /_ T emith R (), (6.8)

[e.9]

R! Function F'()) is nondecreasing, right continuous, F(+00) — F(—oc) = C'(0). We call
F spectral distribution function of process X (t)
Assuming some regularity, F'(\) spectral density can be derived by Fourier transform,

F'(\) = /R1 0(3)6_27”)‘5 ds :/ C(s) cos(2mAs) ds. (6.9)

Rl
Just like finding a random Fourier series for BM from its covariance, one can construct a
random Fourier integral for X (¢):
Let Z(\) be a process with orthogonal increments:

E[(Z(a) = Z(b))(Z(d") = Z(V)] =0,

if (a,b) N (a’, V") empty, and

Then

X(t) = /_ XA 7 (). (6.10)

has the same distribution with X.



The random integral | g(\)dZ()) is defined as L limit of finite Stieltjes sum:

Y alZ() = Zw-)];

it g € L*(dF).
Examples of Spectral Densities:
(1) O-U: C(s) = e~ 71l taking Fourier transform (6.9):

2
() =—1
V2 4 42\
(2) Gaussian white noise: C(s) = d(s). F'(A) = 1. The discrete Stieltjes integral does not
converges!
Alternatively, we approximate it by:

Xn(t) = (W(t+h) = W(t))/h,

small A > 0. Process X" has covariance and spectral density:
1
Ch(s,t) = 7 max(0,1 — |t — s|/h),

F,(\) = sin®(2\h) /(mAh)?,

broad band spectrum, X called colored noise. In the limit h — 0, C}, converges to delta
function, X, converges in some weak sense to white noise. ('derivative’ of BM)



