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Random variables

A random variable X is a function from the state space S to the
real numbers.

I Interpretation: X is a quantity depending on the outcome in S

Example: Toss n coins so S is the set of 2n coin sequences.

I X = {number of heads} maps a sequence to the num. of heads

I What is P(X = k)?

I Answer: #{sequences with k heads}
|S| =

(nk)
2n
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Examples

Shuffle n cards and let X be the position of card 1.

I X has values in {1, . . . , n}
I What is P(X = k)?

Roll 3 dice and let Y be the sum of the values. What is P(Y = 5)?



Indicator random variables

The indicator random variable of an event E is

1E (x) =

{
1 x ∈ E

0 x /∈ E
.

If E1, . . . ,Ek are events, then X =
∑k

i=1 1Ei
is the number of

events which occur.
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Probability mass function

A random variable X is discrete if its values lie in a countable set.

The probability mass function is pX (a) = P(X = a).

If A is the countable set of values of X , we have∑
a∈A

pX (a) = 1.



Cumulative distribution function

The cumulative distribution function (CDF) of X is

FX (a) := P(X ≤ a) =
∑
x≤a

pX (x).

Notice that FX (a) is non-decreasing and

lim
a→−∞

FX (a) = 0

and
lim
a→∞

FX (a) = 1.



Examples

Let T1,T2, . . . be a sequence of independent fair coin tosses in
{T ,H}. Let X be the smallest i for which Ti = H.

What is pX (k)?

What is FX (k)?



Examples

The probability mass function of a random variable X is given by
p(i) = cλi/i !, i = 0, 1, 2, cdots, where λ is some positive value.
Find (a) P{X = 0} and (b) P{X > 2}.



Gambler’s ruin

Suppose gamblers Alice and Bob start with m and n dollars and
take turns making fair $1 bets.
What is the probability that Alice runs out of money first?

I Let Xm be the event that Alice runs out of money first starting
with m dollars.

I Let F be the event that Alice wins the first flip.

I By law of total probability, we have

P(Xm) = P(Xm | F )P(F ) + P(Xm | F c)P(F c),

where P(Xm | F ) = P(Xm+1) and P(Xm | F c) = P(Xm−1).

I Setting pm = P(Xm), this means that

pm =
1

2
pm−1 +

1

2
pm+1.
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Gambler’s ruin

Suppose gamblers Alice and Bob start with l and n dollars and
take turns making fair $1 bets.
What is the probability that Alice runs out of money first?

I Let Xm be the event that Alice runs out of money first starting
with m dollars (then Bob start with l + n −m).

I For pm = P(Xm), we have

pm =
1

2
pm−1 +

1

2
pm+1 ⇐⇒ pm − pm−1 = pm+1 − pm.

I Notice that p0 = 1 and pl+n = 0, so p0, p1, . . . , pl+n are evenly
spaced along [0, 1].

I This implies pk = l+n−k
l+n , hence pl = n

l+n .
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Gambler’s ruin

Suppose gamblers Alice and Bob start with l and ∞ dollars and
take turns making fair $1 bets.
What is the probability that Alice runs out of money first?

I If Bob starts with n dollars, answer is n
l+n . Now

lim
n→∞

n

l + n
= 1.

I If n is large, the house (Bob) always wins.
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