Lecture 4: Solvable SDEs

Zhongjian Wang*

Abstract
linear SDEs, O-U, Solutions and Moments, reducible SDEs.

1 Vector Valued Ito Integral

We write symbolically as a d -dimensional vector stochastic differential
dXt = €tdt + Ftth.

Then for any 0 < s <t < T, which we interpret componentwise as

Xk Xk = /t eFdu + i/t ERqWi,
s = s
We define a scalar process {Y;,0 <t < T} by
V,=U(tX)=U(t, X}, X},...., X}
Then the stochastic differential for Y; is given by

d 82U
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Example:  Let X} and X? satisfy the scalar stochastic differentials
dX} = eldt + fldW;}

for i = 1,2 and let U (¢, 21,29) = x129. Then the stochastic differential for the product
process

Y= X/ X7
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depends on whether the Wiener processes W} and W? are independent or dependent. In
the former case the differentials (4.8) can be written as the vector differential

Xl 61 fl 0 Wl
af X0 = tdt+{t P()
(36 )= (o Jare [ T Ja(iis
and the transformed differential is
dY, = (e, X} + e} X]) dt + fI X}dW/ + fEX[dW}

In contrast, when W' = W2 = W, the vector differential for (4.8) is

1 1 1
d( 3 )= (e Yars (o )aw

and there is an extra term f} f2dt in the differential of Y;, which is now

dY, = (e} X7 + e} X} + fLf7) dt + (f1X7 + f2 X)) dW, (1.1)

2 Linear SDEs

General form:

dX; = (a1 ()X, + as(t))dt + (by(£) X, + ba(t))dW, (2.2)

with given coefficients, W; and its associated o-algebra A;. Initial data X, is A;, measur-
able.

Autonomous: if coefficients = consts against time.

Homogeneous: if ay = by = 0:

dXt = ai (t) Xtdt + bl (t) Xt th, (23)

solution with initial data 1, is called fundamental solution, ®,,.
Linear in narrow-sense: if b; = 0.

3 Narrow-sense linear SDE (b; = 0)
dX;: = (ar() Xy + as(t))dt + (bo(t))dWs, (3.4)

Fundamental solution (as = by = 0) is:

t
b, = el | ai(s)ds).
to
Using integrating factor idea, one gets (@, = ®):

(@ X)) = [(71)X) + (a1 Xy + a2) D H]dt + b @~ dWV,
= ay®'dt + byddW,, (3.5)
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integrating:

t t
cbtjgoxt =X, + / a2(5)¢;§0ds+ / bg(s)<1>;§0dws, (3.6)

to to

or: . .
X, = &4 [ Xy, + / as(s)®,; ds + / ba(s) D, dW,]. (3.7)

to to

3.1 Langevin equation and O-U
Langevin equation (a, b, constants):
dXt = —CLXtdt + deta

solution:

t
X,=e Xy +b / e~ =) quy,. (3.8)
0

Lemma 3.1 The process:
V(t) = / t CCl 1
is Gaussian with covariance: 0
EV(s)V(1)] = ple — e=l=+l), 5= 12/(20),

Sketch of proof: Consider s,t > 0. V() is an approximation of sum ) f(¢;)(W,s1 — W),
or sum of i.i.d. Gaussian r.v’s, so it remains Gaussian. For a partition ¢;’s of [0, ¢], write:
V(s)mb) e "7 (Wi — Wa),

[0,5]

V() mbY e T (Wi — Wh),
0.4
SO:

EV(s)V(@®)] = b > ety —1y).
In the limit:

min(t,s)
E[V(s)V(1)] = B2e—o+D) / 27
0

Ast — oo, E(V?3(t)) — p, limiting distribution N(0, p). Process V is conditioned to zero at
t = 0. To make it stationary, choose Xy to be N (0, p) independent of o-algebra generated
by V(t), t > 0.



Lemma 3.2 Langevin solution X (t) in (3.8) with such Xy gives O-U with covariance:
pe~alt=sl.
3.2 Moments of Solutions
Ito SDE is the place to take moments; first moment m(t) = E(X})) from (2.2):
m/(t) = a1 (t)m(t) + as(t). (3.9)
Deriving another Ito SDE for X? then taking moment give equation for P(t) = E(X?):
P'(t) = (2a1 + b)) P + 2m(t)(az(t) + by (t)ba(t)) + b5(2). (3.10)

Similarly higher moments. The solution is called "closed” at each level of moment.

4 General Case

Using also integrating factor idea, only that fundamental solution of the homogeneous
equation,

dXt = a1 (t)Xtdt + b1 (t)Xtth, (411)

is stochastic.
Changing to Stratonovich form,

1
dXt = (a1 — §b%)Xtdt + lel @) th,

we find:
D,y = exp{/t [ai(s) — %b?(s)]ds —I—/ by(s)dWs}. (4.12)

to
Now by Ito formula,
d(D;4) = (a2(t) — bi(t)ba(t)) Dy dt 4 by @y AW, (4.13)
by (1.1)

d (D0 X:) = [ (—ar(t) + b5(2) Xi + (a1 () Xy + az(t))] @, dt
— by (t) [b1(8) X, + ba(t)] ®; ) dt

_1 . (4.14)
+ [—bl(t)q)mOXt + (b1 () X + ba(1)) <I>t7to] dW,
= (az(t) — by (t)ba(t)) Py dt + b ()P, AW,
integrating and taking ®;,:
t t
Xt = ®t7t0 [XtO -+ / (0/2 - ble)(D;tlodS -+ / bQ(PEt{]dWS] (415)
to to



5 Project II (due 04/19/21)
I11. Let X, = [, f(s,w)dW,, show that X' is a solution of SDE:
2V = P2 (0w Vidt + (1.0 Vi W,
and X2 Jo (@) ds 5 5 solution of SDE:
dYy = f(t,w) Y, dW,.

I12. Derive the second moment equation for general linear Ito SDE, and find first and
second moments of the Langevin equation.

I13. Generate the Ornstein-Uhlenbeck process numerically by discretizing the integral
representation:

t
X, =e 2Xo+2 / e 2= gy,
0

with left hand rule (Ito) for a small grid size ds of your choice, for ¢ € [0,1]. Here Xj is
N(0,1) r.v. independent of o-algebra generated by W (t), t > 0. Compute the covariance
E(X;X,) numerically and use that to help determine a choice of ds by comparing with
exact covariance e~2=*l. Plot a sample path of solution on [0, 1].

6 Reducible PDEs

Find a nonlinear mapping X; = U(t, Y;) so that:

AY, = a(t, Y;)dt + b(t, V;)dWV,, (6.16)
is transformed into:
dX; = (a1 (1) Xy + az(t))dt + (b1 () X; + bao(t))dW. (6.17)
Ito formula gives:
1
dU = (Uy + aU, + §b2Uyy)dt + bU, dW,, (6.18)
matching (6.17), (6.18):
1
(Us + aU, + 5b?Uyy) = a;U + ay, (6.19)
bU, = bU + bs. (6.20)

Two equations for U implies a compatibility condition on a and b.
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Consider the Autonomous case:
adY; = a(Yy)dt + b(Y;)dWy, (6.21)

and X; = U(Y;). Eqns (6.19)-(6.20) reduce to (a;, b; consts in time):

1
a(y)U, + §b2(y)Uyy =a1U(y) + as, (6.22)
b(y)U, = 01U (y) + bs. (6.23)
If b0, by #0:
y
Uly) = Ce"BW — b, /by, B(y) = / ds/b(s). (6.24)
Yo
Plug (6.24) in (6.22):
1
(blA(y) + 5()% - al)CeblB(y) = a9 — albg/bl. (625)

where
Aly) = aly)/bly) — by/2.
Diff. (6.25), multip. b(y)e "B® /b, diff. again:

b A, + (bA,), =0, (6.26)

the compatibility condition on a and b.

To sum up:
B if by #£ 0,

U(y) = b2B(y), if by =0.

6.1 Example

Nonlinear SDE: 1
dY, = —§e_mdt + e Yt dW,. (6.27)

In this case, A = 0, fully compatible for any b;. Take by =0, by = 1, U = €Y. Substituting
this into (6.22) to find a1 = a3 = 0. Thus X; = e¥t, and the resulting equation:

dX; = dWy,

solution:
Xt = Wt + €Y0,

SO:
Y, = In(W; + ),
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valid until time:
T =T (Yy(w)) = min{t > 0 : Wy(w) + 0@ =0}

The example showed that nonlinear SDE solutions in general exist only for a finite time
dependent on realizations. Like for determinsitic ODEs, we do not expect global existence
of solutions without assumptions on the growth of nonlinearity in the equation.

Example: random logistic growth model:
dY, =rY ()1 =Y (t)dt + Y (t)dW (t),

r > 0 constant growth rate, Y (0) = Y. Compatible if by = =1, b =0, a1 =1 —1r, ag = r.
The transform is: X =1/Y. X eqn:

dX (1) = (1 — )X (t) + r)dt — X (£)dW (t).

Solutions are:
' Y(t) = exp{(r —1/2)t + W(t)} .
Y=10) + 7 [y exp{(r — 1/2)t' + W (¥')}dt/

Solutions are global if Y'(0)r > 0.




