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Abstract

linear SDEs, O-U, Solutions and Moments, reducible SDEs.

1 Vector Valued Ito Integral

We write symbolically as a d -dimensional vector stochastic differential

dXt = etdt+ FtdWt.

Then for any 0 ≤ s ≤ t ≤ T, which we interpret componentwise as

Xk
t −Xk

s =

∫ t

s

ekudu+
m∑
j=1

∫ t

s

F k,j
u dW j

u .

We define a scalar process {Yt, 0 ≤ t ≤ T} by

Yt = U (t,Xt) = U
(
t,X1

t , X
2
t , . . . , X

d
t

)
Then the stochastic differential for Yt is given by

dYt =

{
∂U

∂t
+

d∑
k=1

ekt
∂U

∂xk
+

1

2

m∑
j=1

d∑
i,k=1

F i,j
t F k,j

t

∂2U

∂xi∂xk

}
dt

+
m∑
j=1

d∑
i=1

F i,j
t

∂U

∂xi
dW j

t

Example: Let X1
t and X2

t satisfy the scalar stochastic differentials

dX i
t = eitdt+ f itdW

i
t

for i = 1, 2 and let U (t, x1, x2) = x1x2. Then the stochastic differential for the product
process

Yt = X1
tX

2
t
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depends on whether the Wiener processes W 1
t and W 2

t are independent or dependent. In
the former case the differentials (4.8) can be written as the vector differential

d

(
X1
t

X2
t

)
=

(
e1t
e2t

)
dt+

[
f 1
t 0

0 f 2
t

]
d

(
W 1
t

W 2
t

)
and the transformed differential is

dYt =
(
e1tX

2
t + e2tX

1
t

)
dt+ f 1

t X
2
t dW

1
t + f 2

t X
1
t dW

2
t

In contrast, when W 1
t = W 2

t = Wt the vector differential for (4.8) is

d

(
X1
t

X2
t

)
=

(
e1t
e2t

)
dt+

(
f 1
t

f 2
t

)
dWt

and there is an extra term f 1
t f

2
t dt in the differential of Yt, which is now

dYt =
(
e1tX

2
t + e2tX

1
t + f 1

t f
2
t

)
dt+

(
f 1
t X

2
t + f 2

t X
1
t

)
dWt (1.1)

2 Linear SDEs

General form:
dXt = (a1(t)Xt + a2(t))dt+ (b1(t)Xt + b2(t))dWt, (2.2)

with given coefficients, Wt and its associated σ-algebra At. Initial data Xt0 is At0 measur-
able.
Autonomous: if coefficients = consts against time.
Homogeneous: if a2 = b2 = 0:

dXt = a1(t)Xtdt+ b1(t)Xt dWt, (2.3)

solution with initial data 1, is called fundamental solution, Φt,t0 .
Linear in narrow-sense: if b1 = 0.

3 Narrow-sense linear SDE (b1 = 0)

dXt = (a1(t)Xt + a2(t))dt+ (b2(t))dWt, (3.4)

Fundamental solution (a2 = b2 = 0) is:

Φt,t0 = exp{
∫ t

t0

a1(s) ds}.

Using integrating factor idea, one gets (Φt,t0 = Φ):

d(Φ−1t,t0Xt) = [(Φ−1)tXt + (a1Xt + a2)Φ
−1]dt+ b2Φ

−1dWt,

= a2Φ
−1dt+ b2Φ

−1dWt, (3.5)
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integrating:

Φ−1t,t0Xt = Xt0 +

∫ t

t0

a2(s)Φ
−1
s,t0
ds+

∫ t

t0

b2(s)Φ
−1
s,t0
dWs, (3.6)

or:

Xt = Φt,t0 [Xt0 +

∫ t

t0

a2(s)Φ
−1
s,t0
ds+

∫ t

t0

b2(s)Φ
−1
s,t0
dWs]. (3.7)

3.1 Langevin equation and O-U

Langevin equation (a, b, constants):

dXt = −aXtdt+ bdWt,

solution:

Xt = e−atX0 + b

∫ t

0

e−a(t−s)dWs. (3.8)

Lemma 3.1 The process:

V (t) = b

∫ t

0

e−a(t−s)dWs,

is Gaussian with covariance:

E[V (s)V (t)] = ρ(e−a|s−t| − e−a|s+t|), ρ = b2/(2a).

Sketch of proof: Consider s, t ≥ 0. V (t) is an approximation of sum
∑
f(tj)(Wj+1 −Wj),

or sum of i.i.d. Gaussian r.v’s, so it remains Gaussian. For a partition tj’s of [0, t], write:

V (s) ≈ b
∑
[0,s]

e−a(s−tk)(Wk+1 −Wk),

V (t) ≈ b
∑
[0,t]

e−a(t−tk)(Wk+1 −Wk),

so:

E[V (s)V (t)] ≈ b2
∑

[0,min(t,s)]

e−a(s+t)+2atk(tk+1 − tk).

In the limit:

E[V (s)V (t)] = b2e−a(s+t)
∫ min(t,s)

0

e2aτdτ.

As t→∞, E(V 2(t))→ ρ, limiting distribution N(0, ρ). Process V is conditioned to zero at
t = 0. To make it stationary, choose X0 to be N(0, ρ) independent of σ-algebra generated
by V (t), t > 0.
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Lemma 3.2 Langevin solution X(t) in (3.8) with such X0 gives O-U with covariance:
ρe−a|t−s|.

3.2 Moments of Solutions

Ito SDE is the place to take moments; first moment m(t) = E(Xt)) from (2.2):

m′(t) = a1(t)m(t) + a2(t). (3.9)

Deriving another Ito SDE for X2
t then taking moment give equation for P (t) = E(X2

t ):

P ′(t) = (2a1 + b21)P + 2m(t)(a2(t) + b1(t)b2(t)) + b22(t). (3.10)

Similarly higher moments. The solution is called ”closed” at each level of moment.

4 General Case

Using also integrating factor idea, only that fundamental solution of the homogeneous
equation,

dXt = a1(t)Xtdt+ b1(t)XtdWt, (4.11)

is stochastic.
Changing to Stratonovich form,

dXt = (a1 −
1

2
b21)Xtdt+ b1X1 ◦ dWt,

we find:

Φt,t0 = exp{
∫ t

t0

[a1(s)−
1

2
b21(s)]ds+

∫ t

t0

b1(s)dWs}. (4.12)

Now by Ito formula,

d(Φ−1t,t0) = (a2(t)− b1(t)b2(t))Φ−1t,t0dt+ b2Φ
−1
t,t0
dWt, (4.13)

by (1.1)

d
(
Φ−1t,t0Xt

)
= [
(
−a1(t) + b21(t)

)
Xt + (a1(t)Xt + a2(t))

]
Φ−1t,t0dt

− b1(t) [b1(t)Xt + b2(t)] Φ−1t,t0dt

+
[
−b1(t)Φ−1t,t0Xt + (b1(t)Xt + b2(t)) Φ−1t,t0

]
dWt

= (a2(t)− b1(t)b2(t)) Φ−1t,t0dt+ b2(t)Φ
−1
t,t0
dWt

(4.14)

integrating and taking Φt,t0 :

Xt = Φt,t0 [Xt0 +

∫ t

t0

(a2 − b1b2)Φ−1t,t0ds+

∫ t

t0

b2Φ
−1
t,t0
dWs]. (4.15)
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5 Project II (due 04/19/21)

II1. Let Xt =
∫ t
0
f(s, ω) dWs, show that eXt is a solution of SDE:

dYt =
1

2
f 2(t, ω)Ytdt+ f(t, ω)Yt dWt,

and eXt− 1
2

∫ t
0 f2(s,ω) ds is a solution of SDE:

dYt = f(t, ω)Yt dWt.

II2. Derive the second moment equation for general linear Ito SDE, and find first and
second moments of the Langevin equation.

II3. Generate the Ornstein-Uhlenbeck process numerically by discretizing the integral
representation:

Xt = e−2tX0 + 2

∫ t

0

e−2(t−s)dWs,

with left hand rule (Ito) for a small grid size ds of your choice, for t ∈ [0, 1]. Here X0 is
N(0, 1) r.v. independent of σ-algebra generated by W (t), t > 0. Compute the covariance
E(XtXs) numerically and use that to help determine a choice of ds by comparing with
exact covariance e−2|t−s|. Plot a sample path of solution on [0, 1].

6 Reducible PDEs

Find a nonlinear mapping Xt = U(t, Yt) so that:

dYt = a(t, Yt)dt+ b(t, Yt)dWt, (6.16)

is transformed into:

dXt = (a1(t)Xt + a2(t))dt+ (b1(t)Xt + b2(t))dWt. (6.17)

Ito formula gives:

dU = (Ut + aUy +
1

2
b2Uyy)dt+ bUydWt, (6.18)

matching (6.17), (6.18):

(Ut + aUy +
1

2
b2Uyy) = a1U + a2, (6.19)

bUy = b1U + b2. (6.20)

Two equations for U implies a compatibility condition on a and b.
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Consider the Autonomous case:

dYt = a(Yt)dt+ b(Yt)dWt, (6.21)

and Xt = U(Yt). Eqns (6.19)-(6.20) reduce to (ai, bi consts in time):

a(y)Uy +
1

2
b2(y)Uyy = a1U(y) + a2, (6.22)

b(y)Uy = b1U(y) + b2. (6.23)

If b 6= 0, b1 6= 0:

U(y) = Ceb1B(y) − b2/b1, B(y) =

∫ y

y0

ds/b(s). (6.24)

Plug (6.24) in (6.22):

(b1A(y) +
1

2
b21 − a1)Ceb1B(y) = a2 − a1b2/b1. (6.25)

where
A(y) = a(y)/b(y)− by/2.

Diff. (6.25), multip. b(y)e−b1B(y)/b1, diff. again:

b1Ay + (bAy)y = 0, (6.26)

the compatibility condition on a and b.
To sum up:

U(y) = eb1B(y), if b1 6= 0,

U(y) = b2B(y), if b1 = 0.

6.1 Example

Nonlinear SDE:

dYt = −1

2
e−2Ytdt+ e−YtdWt. (6.27)

In this case, A ≡ 0, fully compatible for any b1. Take b1 = 0, b2 = 1, U = ey. Substituting
this into (6.22) to find a1 = a2 = 0. Thus Xt = eYt , and the resulting equation:

dXt = dWt,

solution:
Xt = Wt + eY0 ,

so:
Yt = ln(Wt + eY0),
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valid until time:

T = T (Y0(ω)) = min{t ≥ 0 : Wt(ω) + eY0(ω) = 0.}

The example showed that nonlinear SDE solutions in general exist only for a finite time
dependent on realizations. Like for determinsitic ODEs, we do not expect global existence
of solutions without assumptions on the growth of nonlinearity in the equation.

Example: random logistic growth model:

dYt = rY (t)(1− Y (t))dt+ Y (t)dW (t),

r > 0 constant growth rate, Y (0) = Y0. Compatible if b1 = −1, b2 = 0, a1 = 1− r, a2 = r.
The transform is: X = 1/Y . X eqn:

dX(t) = ((1− r)X(t) + r)dt−X(t)dW (t).

Solutions are:

Y (t) =
exp{(r − 1/2)t+W (t)}

Y −1(0) + r
∫ t
0

exp{(r − 1/2)t′ +W (t′)}dt′
.

Solutions are global if Y (0)r > 0.
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