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Definition

A random variable is said to have a gamma distribution with
parameters (α, λ), λ > 0, α > 0, if its density function is given by

f (x) =

{
λe−λx (λx)α−1

Γ(α) x ≥ 0

0 x < 0

where Γ(α), called the gamma function, is defined as

Γ(α) =

∫ ∞
0

e−yyα−1dy



How to calculate Γ(α)?

Integration by parts!

Γ(α) =

∫ ∞
0

e−yyα−1dy

= −e−yy−α−1|∞0 +

∫ ∞
0

e−y (α− 1)yα−2dy

=

So,

Γ(n) = (n − 1)Γ(n − 1)

= · · ·
= (n − 1)(n − 2) · · · 3 · 2Γ(1)

Note Γ(1) =
∫∞

0 e−xdx = 1,
So Γ(n) =
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Propositions

Recall,

f (x) =

{
λe−λx (λx)α−1

Γ(α) x ≥ 0

0 x < 0

Exponential distribution with parameter λ is a gamma distribution
with parameter (1, λ).
If X follows a gamma distribution with parameter (α, λ), then
E[X ] = α

λ .

What about Var(X )?
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Cauchy Distribution

A random variable is said to have a Cauchy distribution with
parameter θ, −∞ < θ <∞, if its density is given by

f (x) =
1

π

1

1 + (x − θ)2

If X follows a Cauchy distribution with parameter 0, EX is
undefined!
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First question

Let X be uniformly distributed over (0, 1), what is the distribution
of Y = X n?

Consider,

FY (y) =P(Y ≤ y)

=P( )

So fY (y) =
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More generally...

Let X be a continuous random variable with pdf fX , what is the
distribution of Y = |X |?

Consider,

FY (y) =P(Y ≤ y) where y ≥ 0

=P( )

So fY (y) =
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Theorem

Let X be a continuous random variable having probability density
function fX . Suppose that g(x) is a strictly monotonic (increasing
or decreasing), differentiable (and thus continuous) function of x .
Then the random variable Y defined by Y = g(X ) has a
probability density function given by

fY (y) =

{
fX (g−1(y))| ddy g

−1(y)| if y = g(x) for some x

0 if y 6= g(x) for all x

where g−1(y) is defined to equal that value of x such that
g(x) = y .



Example: Y = X n

Let X be a continuous nonnegative random variable with density
function f , and let Y = X n. Find fY , the probability density
function of Y .



Example: Gamma Distribution

If X follows a gamma distribution with parameter (α, λ), then cX
(c > 0) follows a Gamma distribution with parameter (α, λ/c)
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