Lecture 16: General Weak Approximation

Zhongjian Wang*

Abstract
Introducing weak schemes based on Ito-Taylor expansion and the convergence
theorem.
Recall general rule of convergence, a weak order =1, 2, 3,--- scheme needs all of

the multiple Ito integrals from the Ito-Taylor expansion in the set I's = {a : l(a) < S}.
Here [ is the length of the index a.. Note that is different from the strong scheme index set
A, which also depends on the number of zeros in the index n(a).

1 Explicit Weak RK Schemes

1.1 Order 2 Schemes

Again we start with d =m =1,

Yn+1 :Yn + a\ + bAW
+ Loa[(o’o) + Lla[(Lo) + LObI(OJ) + le[(l,l)
=Y, + aA + bAW

A? AW)? — A
+ L% %+ L'aAZ + LWAWA = AZ) + ppAW) =4

In deriving Taylor weak schemes, we also replace AW by AW |, AZ by %AWA where one

may choose Was N (0,A), or 3 -point random variable taking +£v/3A with prob 1/6 each,
and zero with prob 2/3. So,

. A2 AWA AW)2 — A
Yot =Yn+aA+bAW+L°a7 + (L1a+L°b)%+le%
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Now a step further, consider supporting values
T =Y, +aA + bAW
T+ =Y, +aA £ bVA,

then Platen, in the autonomous case d = 1,2, ... with scalar noise m = 1, the following
explicit order 2.0 weak scheme:

Yoy = (a( ) +a)A
i(b(’r) b(T7) +2b) AW
F 1) b (1) {(ar) - a}a

For multi-dimensional case,
Yn+1 - Y + 1(
+ Z] 1 |:(

){(AWJ> —A}
77Y) {AWJAW“ + Vm}] A-1/2

with supporting values

T=Y,+aA+) VAW, R,=Y,+aA£VVA

j=1
and
U, =Y, +VVA
Here the AWY for J = 1,2,...,m are independent random variables either 3-point or

normal and the Vj, ;, are independent two-point distributed random variables with

1
P(‘/jlij = iA) - 5

fOI'jQZ]_,...,jl—l,
V}mi =-A
and

‘/}17]'2 = _‘/}27]'1 .



1.2 Order 3 schemes for scalar additive noise

In the autonomous case d = 1,2, ... with m = 1 we have in vector form the explicit order
3.0 weak scheme for scalar additive noise

Vo1 = Yy, + al + bAW

1 3 1, o
+§(a2_+a< _éa_1_1<a2_+a<)>A

> 1, .
+\/;(%(a<+_a<)—g(% _ac)) (AZ

+= [a (Yn+ (a+ag)A+(C+p)b\/Z> —azr—a;f+a}

| =

X [(g + ) AWVA + A+ Cp {(AW)2 - A}]
with
af = a(Ya+ad £0VA0)
and

it = a (Y + 200 £ 0V2A0)

where ¢ is either ¢ or p. Here we use two correlated Gaussian random variables AW ~
N(0;A) and AZ ~ N (0; 1A%) with E(AWAZ) = 1A% together with two independent

two-point distributed random variables ( and p with

P(C=+1)=P(p=+1) = %

2 Richardson Extrapolation Methods

First in deterministic case (b = 0), Euler schemes is first order, so,
yn(A) = z(T) + e(T)A + O (A?)

and

v (58) =alT) + ge(TIA +0 (87),

in this way, we can expect,

1

Zn(A) = 2yon (§A) —yn(4Q)



will be second order! this is called Richardson or Romberg extrapolation.
When approximating the expectation of a functional, say E(f(Xr)), the Euler scheme
is also first order. We then define,

Vin(T) = 2E (g (Y*(1))) = E (9 (Y**(T)))

to achieve second order.
Further more, given order 2 weak approximation, we define,

ViA(T) = 5o 328 (9 (V*(T)) — 12 (9 (V*(T)))
E (g (V7))

to achieve 4-th order. And given order 3 weak approximation, we define,

VialT) = g5 [1032E (9 (Y/(T))) = 1512E (5 (Y*'(7)))

to achieve 6-th order.

General Theory Evaluation ¢ can be generalized and changes of coefficients follows. In
general, consider,

0 = dio
fori=1,...,0+ 1 with
0<dy <---<dpgy1 <00

an order 20 weak extrapolation is given by the expression (3.6)

B+1
Via(T) = 3k (9 (V(T)))
=1
where (if)
B+1
Z a; = 1
=1
and

for each v =g,...,20 — 1.



3 Predictor-Corrector Method

3.1 Implicit Weak Method

To improve the stability of weak schemes, we also consider implicit version.

Implicit Euler The simplest implicit weak scheme is the implicit Euler scheme, which

in the general multi-dimensional case d,m = 1,2, ... has the form
Yosr = Yo+ a(Tosr, Yar1) A+ DV (7, Y,) AW
j=1

where the AWY for j=1,...,mand n = 1,2,... are independent two-point distributed
random variables with

P (AW = +VA) = %
We can also form a family of implicit Euler schemes
Yo=Y+ {(1—a)a(r,,Y,) + aa (thi1, Yar1) A

+ ) OV (1, Y,) AW

J=1

Note again, implicit Euler is A-stable and fully implicit Euler is even not weak consistent.

Implicit Order 2.0 scheme The implicit Taylor order 2.0 scheme and its RK version,
1
Yn+1 = Yn+§ {Cl (Tn+1, YnJrl) + CL} A
T B
+ D VAW D LY AWIA
j=1 7j=1
1 o . N
+ 3 Z LI pi2 (AW]IAW]Q + ‘/}17j2>
Ji,52=1

and



with supporting values
RL =Y, +aA+VVA
and
Ul =Y, £ VVA,

are A-stable.

3.2 Constructing Predict-Corrector schemes

G(Yn+1)+a)

5 to replace a(Y,11) in the implicit scheme.

The idea is to use

Oder 1 scheme We can construct a family of order 1.0 weak predictor-corrector methods
with corrector,

Yoy =Y, + {aa (Tn_H, Yn+1) + (1 —a)a(m,, Yn)} A+ Z V (1,,Y,) AW
=1
for v, € [0, 1], with predictor
Vip1 =Yy +ad + > VAW
j=1
where the AW/ are as we defined before.

Order 2 Scheme In the autonomous 1 -dimensional scalar noise case, d = m = 1, a
possible order 2.0 weak predictor-corrector method has corrector (5.7)

1 _
Yn+1 =Y, + 5 {CL (Yn—l—l) + CL} A+ v,
with
o T 1 / 17\2 1 / 1 271 T
W, = AW + Sbb {(AW) A}+2 <ab +2bb)AWA

and predictor

Vo1 = YotaA + 0,

1 A 1 1
+ éa'bAWA + 5 (aa' + 5@"1)2) A?

where the AW are N(0; A) Gaussian or three-point distributed with

R 1 o 2



4 Project VI (due June 4)

Consider the SDE:
dXt = CLXtdt + bXtth,
a, b constants, has exact solution:
2

b
X; = Xgexp{(a — f)t + bW}

Let Xo=1,a=15b=1,
(1) Solve by implicit Euler, implicit Milstein:

Yn+1 = Yn + CL(Yn+1)A + bAW

+%bb’[(AW)2 N (4.1)

and implicit Runge-Kutta:
Yn_;’_]_ - Yn + a(Yn+1)A + bAW

1
———(b(Y;?) = b)[(AW)? — A)], 4.2
2\@( (Y) = b)[(AW) )] (4.2)
Y* =Y, +aA + bvA. Generate 10000 sample solutions at A =27 m =1 :8, and plot

log, of the root mean square error at t = 1 vs. log, A.
(2) Solve by weak Euler and the simplified weak Taylor:

_I_

N 1 N
1 1 .
—i—E(a'b +ab + §b”b2)AWA
1 1
—i—§(aa' - Ea"bQ)A2. (4.3)

The AW for both schemes is a normal random variable N (0, A) (mean zero, variance A).
Generate 10000 sample solutions at A = 27, m = 1 : 8, and plot log, of the absolute
errors of the first and second moments of X (1) and Y (1) vs. log, A.

(3) Apply Richardson extrapolation to method in (2) with same A and plot log, of the
absolute errors of the first and second moments of X (1) and Y (1) vs. log, A.



