Lecture 1: Random Variables and Convergence.

Zhongjian Wang*

Abstract

Classnotes on random variables, random number generation, distribution and convergence

1 Basic Notion and Examples

Consider throwing a die, there are 6 possible outcomes, denoted by ω_i , $i = 1, \dots, 6$; the set of all outcomes $\Omega = \{\omega_1, \dots, \omega_6\}$, is called *sample space*.

A subset of Ω , e.g. $A = \{\omega_2, \omega_4, \omega_6\}$, is called an *event*. Suppose we did N times of die experiment, event A happened N_a times, then the *probability* of event A is $P(A) = \lim_{N \to \infty} N_a/N$. For a fair die, P(A) = 1/2.

Let the collection of events be A, A a sigma-algebra of all events, meaning

- 1. $\Omega \in A$;
- 2. if $E \in A$, then $E^c \in A$;
- 3. if $E_i \in A$, i countable, then $\cup_i E_i \in A$.

The triple (Ω, A, P) is called a *probability space*. P is a function assigning probability to events, more precisely, a probability measure satisfying:

- 1. $P(E) \ge P(\Phi) = 0$, Φ null event;
- 2. if E_i are countably many disjoint events, $P(\cup_i E_i) = \sum_i P(E_i)$;
- 3. $P(\Omega) = 1$.

^{*}Department of Statistics, University of Chicago

The events E and F are *independent*, if:

$$P(E \cap F) = P(E)P(F),$$

and conditional probability P(E|F) is:

$$P(E|F) = P(E \cap F)/P(F).$$

A random variable r.v. $X(\omega)$ is a function: $\Omega \to R$ such that $\{\omega \in \Omega : X(\omega) \le a\}$ is an event. The distribution function of $X(\omega)$ is:

$$F_X(x) = P(\{\omega \in \Omega : X(\omega) \le x\}),\tag{1.1}$$

satisfying:

- (1) $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to +\infty} F_X(x) = 1$.
- (2) $F_X(x)$ is nondecreasing, right continuous $(\{X \leq y\} \to \{X \leq x\} \text{ as } y \to x + 0).$
- (3) $F_X(x-) = P(X < x) (\{X \le y\} \to \{X < x\} \text{ as } y \to x 0).$
- (4) $P(X = x) = F_X(x) F_X(x-)$.

Conversely, if F satisfies (1)-(3), it's a distribution function of some r.v.

When F_X is absolutely continuous, we have a density function p(x) such that:

$$F(x) = \int_{-\infty}^{x} p(y) \, dy.$$

Examples (continuous r.v):

(1) Uniform distribution on [a, b]:

$$p(x) = \chi_{[a,b]}(x)/(b-a);$$

(2) unit or standard Gaussian (normal) distribution:

$$p(x) = (2\pi)^{-1/2}e^{-x^2/2};$$

(3) exponential distribution $(\lambda > 0)$:

$$p(x) = \lambda e^{-\lambda x} \chi_{(x \ge 0)};$$

Examples (discrete r.v):

(1) two point r.v, taking x_1 with prob. p, x_2 with prob. 1-p, distribution is:

$$F_X = \begin{cases} 0 & x < x_1 \\ p & x \in [x_1, x_2) \\ 1 & x \ge x_2, \end{cases}$$

(2) Poisson distribution with $(\lambda > 0)$:

$$p_n = P(X = n) = \lambda^n \exp\{-\lambda\}/n!, \ n = 0, 1, 2, \cdots$$

Mean of a r.v. is:

$$\mu = E(X) = \sum_{j=1}^{N} x_j p_j,$$

the discrete case and:

$$\mu = E(X) = \int_{R^1} x p(x) \, dx,$$

the continuous case.

Variance is: $\sigma^2 = Var(X) = E((X - \mu)^2)$.

2 Random Number Generators

On digital computers, psuedo-random numbers are used as approximations of random numbers. A common algorithm is the linear recursive scheme:

$$X_{n+1} = aX_n \pmod{c},\tag{2.2}$$

a and c positive relatively prime integers, with initial value "seed" X_0 . The numbers:

$$U_n = X_n/c,$$

will be approximately uniformly distributed over [0,1]. c is usually a large integer in powers of 2, a is a large integer relative prime to c.

Matlab command "rand(m,n)" generates $m \times n$ matrices with psuedo random entries uniformly distributed on (0,1) ($c=2^{1492}$), using current state. S = rand('state') is a 35-element vector containing the current state of the uniform generator. rand('state',0) resets the generator to its initial state. rand('state',J), for integer J, resets the generator to its J-th state. Similarly, "randn(m,n)" generates $m \times n$ matrices with psuedo random entries standard-normally distributed, or unit Gaussian.

Example: a way to visualize the generated random numbers is:

$$t = (0:0.01:1)';$$

 $rand('state', 0);$
 $y1 = rand(size(t));$
 $randn('state', 0);$
 $y2 = randn(size(t));$
 $plot(t, y1, 'b', t, y2, 'g')$

Two-point r.v. can be generated from uniformly distributed r.v. $U \in [0,1]$ as:

$$X = \begin{cases} x_1 & U \in [0, p] \\ x_2 & U \in (p, 1] \end{cases}$$

A continuous r.v with distribution function F_X , can be generated from U as $X = F_X^{-1}(U)$ if F_X^{-1} exists, or more generally:

$$X = \inf\{x: \ U \le F_X(x)\}.$$

This is called inverse transform method. It applies to exponential distribution, to give:

$$X = -\ln(1 - U)/\lambda, \ U \in (0, 1).$$

The Box-Muller method generates Gaussian from two independent $U_i \in [0, 1]$, i = 1, 2 by a nonlinear mapping:

$$N_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2),$$

$$N_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2),$$
(2.3)

where N_1 , N_2 are independent unit Gaussian.

Recall: two Gaussian distribution are independent if their covariance is 0.

3 Moment Inequalities

Some useful inequalities involving moments are:

• Markov inequality:

$$P(\{\omega : X(\omega) \ge a\}) \le \frac{1}{a} E(X), \text{ if } X(\omega) \ge 0;$$

and Chebyshev inequality:

$$P(\{\omega : |X(\omega)|^2 \ge a\}) \le \frac{1}{a}E(X^2),$$

for any a > 0.

• Jensen's inequality:

$$g(E(X)) \le E(g(X)), g \text{ convex.}$$

It follows that for any 0 < r < s:

$$(E(|X - a|^r))^{1/r} \le (E(|X - a|^s))^{1/s},$$

Lyapunov inequality.

• Hölder inequality:

$$E(|X+Y|^r)^{1/r} \le E(|X|^r)^{1/r} + E(|Y|^r)^{1/r}, \ r \ge 1,$$

$$E(|X \cdot Y|) \le (E(|X|^p))^{1/p} (E(|Y|^q))^{1/q}, \ p^{-1} + q^{-1} = 1.$$

4 Joint Distribution

For n r.v's X_1, X_2, \dots, X_n , Joint Distribution Function is:

$$F_{X_1,\dots,X_n}(x_1,\dots,x_n) = P(\{\omega \in \Omega : X_i(\omega) \le x_i, i = 1, 2, \dots, n\}).$$

• n = 2,

$$F_{X_1,X_2} \to 0, \ x_i \to -\infty,$$

$$F_{X_1,X_2} \to 1, \ x_1,x_2 \to +\infty,$$

 F_{X_1,X_2} is nondecreasing and right continuous in x_1 and x_2 . Marginal Distribution F_{X_1} :

$$F_{X_1}(x_1) = \lim_{x_2 \to \infty} F_{X_1, X_2}(x_1, x_2).$$

Continuous r.v:

$$F_{X_1,X_2}(x_1,x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} p(y_1,y_2) dy_1 dy_2,$$

 $p \ge 0$ density.

Joint Gaussian with mean $\mu = (\mu_1, \mu_2)$ and covariance $C^{-1} = (E(X_i - \mu_i)(X_j - \mu_j)) > 0$:

$$p(x_1, x_2) = \frac{\sqrt{\det(C)}}{2\pi} \exp\left\{ \left(-\frac{1}{2} \sum_{i,j=1}^{2} c^{i,j} (x_i - \mu_i)(x_j - \mu_j) \right) \right\}, \tag{4.4}$$

orthogonal transformation of Gaussian r.v. is Gaussian.

• Independence:

$$F_{X_1X_2}(x_1, x_2) = F_{X_1}(x_1)F_{X_2}(x_2),$$

$$p(x_1, x_2) = p_1(x_1)p_2(x_2).$$

5 Convergence and Limit Theorems

Sequence of r.v. X_1, X_2, \dots, X_n :

• convergence with prob 1 (wp1), also called almost surely convergence (a.s.):

$$P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} |X_n(\omega) - X(\omega)| = 0\right\}\right) = 1; \tag{5.5}$$

 \bullet mean-square convergence, also called L^2 convergence : $(E(X_i^2) \leq C)$

$$\lim_{n \to \infty} E(|X_n - X|^2) = 0; \tag{5.6}$$

• convergence in probability (prob.):

$$\lim_{n \to \infty} P(\{\omega \in \Omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}) = 0, \ \forall \ \epsilon;$$
 (5.7)

• convergence in law, convergence in distribution (d.):

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x), \tag{5.8}$$

at all continuous points of F_X ;

• weak convergence (w):

$$\lim_{n \to \infty} \int_{P^1} f(x) dF_X(x) = \int_{P^1} f(x) dF_X(x), \tag{5.9}$$

for any $f \in C_0(\mathbb{R}^1)$.

Following convergence Theorem holds:

- 1. a.s. \Longrightarrow prob.
- $2. \ L^2 \Longrightarrow \mathrm{prob}.$
- 3. DCT: If $|X_i| \leq |Y|$, wp1, $E(|Y|^2) < \infty$, a.s. $\Longrightarrow L^2$
- 4. prob. \Longrightarrow d. \Longrightarrow w., for any $f \in C_0(\mathbb{R}^1)$.

Example 1: i.i.d. r.v X_i 's, with $\mu = E(X_i), \, \sigma^2 = Var(X_i),$

$$\frac{S_n}{n} = \frac{\sum_{i=1}^n X_i}{n} \to \mu,$$

a.s. and L^2 (Strong Law of Large Numbers), prob. (Weak Law of Large Numbers).

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \to_{d.} N(0,1),$$

N(0,1) unit Gaussian, Central Limit Theorem.

Example 2: Let $\Omega = [0,1], \ P([a,b]) = |b-a|, \ [a,b] \subset [0,1].$ Let $A_n = \{\omega : \omega \in [0,1/n]\}, X_n = \sqrt{n}\chi_{A_n}$, then $X_n \to 0$ in probability, a.s, but not in L^2 .

6 Project I (due: before lecture 4)

You can use any programming language, you don't need to tex your report. Please send the digital version to zhongjianwang25@gmail.com . Title will be P1-(Your Name on UID).

I1. Generate $N=10^4$ uniformly distributed pseudo random numbers on (0,1) on Matlab (or in other environment). Partition the interval into subintervals I_j of equal length 0.05. Count the number of random numbers in I_j as N_j . Plot relative frequencies N_j/N divided by subinterval length, so called histogram. Does the histogram look like density of U(0,1)? Compute sample average:

$$\mu_N = \frac{1}{N} \sum_{j=1}^N x_j,$$

and sample variance:

$$\sigma_N = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - \mu_N)^2.$$

Compare them to 1/2 and 1/12, exact mean and variance of U(0,1).

- I2. Repeat I1 for random variable defined on [0, 2] interval whose PDF is given by $\rho(x) = \frac{1}{4}x^3$.
- I3. Show that the two random variables N_1, N_2 generated by Box-Muller method are Gaussian with zero mean and identity covariance when U_1, U_2 are independent U(0,1) uniformly distributed.
- I4. (1) Let $Z = (N_1, N_2)$, S an invertible 2 x 2 matrix, $\mu \in \mathbb{R}^2$, show that $X = S^T Z + \mu$ is jointly Gaussian with mean μ , and covariance matrix $S^T S$.
- (2) Write a program to generate a pair of Gaussian pseudo random numbers (X_1, X_2) with zero mean and covariance $E(X_1^2) = 1$, $E(X_2^2) = 1/3$, $E(X_1X_2) = 1/2$. Generate 1000 pairs of such numbers, evaluate their sample averages and sample covariances.
- (3) Is it possible to generate a pair of real random variables (X_1, X_2) with zero mean and covariance $E(X_1^2) = 1$, $E(X_2^2) = 1/3$, $E(X_1X_2) = 1$? Note the random variables does not have to be Gaussian.