Week 2 Statistics 251

Zhongjian Wang

Department of Statistics The University of Chicago

Equal likelihood

Inclusion-Exclusion

Conditional probability

Bayes' rule

Independence

Events of equal likelihood

Suppose a sample space S has N events. If each event is equally likely, what is the probability of each event?

• If each event has probability p, then $p \cdot N = 1$, so $p = \frac{1}{N}$

What is $\mathbb{P}(A)$ for a general subset $A \subset S$?

• A consists of |A| disjoint events, so the total probability is $\frac{|A|}{|S|}$.

Events of equal likelihood

What is the probability that the sum of two dice rolls is 3?

What is the probability that exactly 4 of 8 coin tosses are heads?

Events of equal likelihood (problem session)

Roll 5 dice. What is the probability that exactly 2 of the dice show the number 1?

In a class of 60 students, what is the probability that none of them have student ID ending in 9?

Birthday paradox (problem session)

In a room of N people, what is the probability that some two of them have the same birthday?

What is the smallest N for which this probability is above $\frac{1}{2}$?

Equal likelihood

Inclusion-Exclusion

Conditional probability

Bayes' rule

Independence

Principle of inclusion-exclusion

Suppose we roll 2 dice and get two numbers a and b. What is the probability that either a = b or a is even?

• Define $A = \{a = b\}$ and $B = \{a \text{ is even}\}$.

•
$$\mathbb{P}(A) = \frac{1}{6}$$
, $\mathbb{P}(B) = \frac{1}{2}$, and $\mathbb{P}(A \cap B) = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12}$

$$\blacktriangleright \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Principle of inclusion-exclusion

More generally, suppose we have events E_1, \ldots, E_n . Then, we have

$$\mathbb{P}\Big(E_1 \cup \cdots \cup E_n\Big) = \sum_{i=1}^n \mathbb{P}(E_i) - \sum_{i < j} \mathbb{P}(E_i \cap E_j) \\ + \sum_{i < j < k} \mathbb{P}(E_i \cap E_j \cap E_k) - \cdots.$$

Derangements

Suppose a deck of n cards is shuffled. What is the probability that, after the shuffle, no card is in the same position?

Derangements

Suppose a deck of n cards is shuffled. What is the probability that, after the shuffle, no card is in the same position?

- ► Let *E_i* be the probability that card *i* is in position *i* after the shuffle.
- Because all orderings are equally likely, $\mathbb{P}(E_i) = \frac{1}{n}$.

For any
$$i_1,\ldots,i_k$$
, $\mathbb{P}(E_{i_1}\cap\cdots\cap E_{i_k})=\frac{(n-k)!}{n!}$.

Derangements

Suppose a deck of n cards is shuffled. What is the probability that, after the shuffle, no card is in the same position?

- ► Let *E_i* be the probability that card *i* is in position *i* after the shuffle.
- Because all orderings are equally likely, $\mathbb{P}(E_i) = \frac{1}{n}$.
- For any i_1, \ldots, i_k , $\mathbb{P}(E_{i_1} \cap \cdots \cap E_{i_k}) = \frac{(n-k)!}{n!}$.

In the principle of inclusion-exclusion, we have (ⁿ) such terms, which means

$$\mathbb{P}\Big(E_1 \cup \dots \cup E_n\Big) = \binom{n}{1} \cdot \frac{(n-1)!}{n!} - \binom{n}{2} \cdot \frac{(n-2)!}{n!} \\ + \binom{n}{3} \cdot \frac{(n-3)!}{n!} - \dots = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots$$

• The answer is $1 - \mathbb{P}(E_1 \cup \cdots \cup E_n) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots = \frac{1}{e}$.

Equal likelihood

Inclusion-Exclusion

Conditional probability

Bayes' rule

Independence

Definition of conditional probability

Let S be a sample space and $F \subset S$ a subset.

- Suppose a random event in *S* is drawn.
- The conditional probability of another event E given F is the probability that E happened given that F happened. Quantitatively, it is

$$\mathbb{P}(E \mid F) := rac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}.$$

This is known as "the probability of E conditioned on F".

For events E_1, \ldots, E_n , we have

$$\mathbb{P}\Big(E_1\cap\cdots\cap E_n\Big)=\mathbb{P}(E_1)\cdot\mathbb{P}(E_2\mid E_1)\cdots\mathbb{P}(E_n\mid E_1\cap E_2\cap\cdots\cap E_{n-1}).$$

To have $E_1 \cap \cdots \cap E_n$, must first have E_1 , then E_2 given E_1 , then E_3 given $E_1 \cap E_2$, then E_4 given $E_1 \cap E_2 \cap E_3$, ...

The conditional probability $\mathbb{P}(- | F)$ satisfies axioms of a probability space:

- $0 \leq \mathbb{P}(E \mid F) \leq 1$
- $\blacktriangleright \mathbb{P}(S \mid F) = 1$
- $\mathbb{P}\left(\bigcup_{i\in I} E_i \mid F\right) = \sum_i \mathbb{P}(E_i \mid F)$ for E_i disjoint and I countable. Intepretation of $\mathbb{P}(- \mid F)$:
- Probabilities of events outside F are set to 0;
- ▶ Probabilities of events inside *F* are multiplied by $\frac{1}{\mathbb{P}(F)}$.

Graph the probability that a bus will arrive eventually, as a function of minutes to the scheduled arrival.

Graph the probability that American Airlines will go bankrupt, given a sequence of events.

- Flights between US and China canceled
- Europe travel ban
- Federal airline bailout

...

Let E_i be the probability that a roll of a die lies outside $\{1, \ldots, i\}$ What is $\mathbb{P}(E_4 \mid E_1 \cap E_2 \cap E_3)$?

- A TV show in the 1970s had the following game:
- ► There is a prize behind 1 of 3 doors, all equally likely.
- You point to a door, say A. The host opens one of the other two doors, say B, and shows you it does not have a prize.
- You get to open a door and claim what is behind it. Should you stay with A or switch to C?

Equal likelihood

Inclusion-Exclusion

Conditional probability

Bayes' rule

Independence

Remember that the conditional probability of E given F is

$$\mathbb{P}(E \mid F) = rac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}.$$

Equivalently, we have

$$\mathbb{P}(E \cap F) = \mathbb{P}(F) \cdot \mathbb{P}(E \mid F).$$

Suppose we want to compute $\mathbb{P}(E)$. For another event F, we have

$$\mathbb{P}(E) = \mathbb{P}(E \cap F) + \mathbb{P}(E \cap F^c)$$
$$= \mathbb{P}(E \mid F) \cdot \mathbb{P}(F) + \mathbb{P}(E \mid F^c) \cdot \mathbb{P}(F^c).$$

Example: D = "have disease", + = "test positive". Suppose $\mathbb{P}(D) = p$, $\mathbb{P}(+ \mid D) = 0.9$, and $\mathbb{P}(+ \mid D^c) = 0.1$. We have

$$\mathbb{P}(+) = \mathbb{P}(+\mid D) \cdot \mathbb{P}(D) + \mathbb{P}(+\mid D^c) \cdot \mathbb{P}(D^c) = 0.9
ho + 0.1(1-
ho) = 0.1 + 0.8
ho.$$

What we really care about is $\mathbb{P}(D \mid +)$, which is

$$\frac{\mathbb{P}(D\cap +)}{\mathbb{P}(+)} = \frac{\mathbb{P}(+\mid D) \cdot \mathbb{P}(D)}{\mathbb{P}(+)} = \frac{0.9p}{0.9p + 0.1(1-p)}.$$

Law of total probability

If events F_1, F_2, \ldots partition the sample space, then

$$\mathbb{P}(E) = \sum_{i=1}^{n} \mathbb{P}(E \mid F_i) \cdot \mathbb{P}(F_i).$$

Proof: If F_i are disjoint and parition S, then $E \cap F_i$ are disjoint and partition E. So we have

$$\mathbb{P}(E) = \mathbb{P}(E \cap S)$$

= $\mathbb{P}(E \cap (F_1 \cup F_2 \cup \cdots))$
= $\mathbb{P}((E \cap F_1) \cup (E \cup F_2) \cup \cdots)$
= $\sum_{i=1}^{\infty} \mathbb{P}(E \cap F_i)$
= $\sum_{i=1}^{\infty} \mathbb{P}(E \mid F_i) \cdot \mathbb{P}(F_i).$

Bayes' rule

Bayes' rule: By $\mathbb{P}(B \mid A) \cdot \mathbb{P}(A) = \mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \cdot \mathbb{P}(B)$, we have

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)}\mathbb{P}(A).$$

Bayes' rule

Bayes' rule: By $\mathbb{P}(B \mid A) \cdot \mathbb{P}(A) = \mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \cdot \mathbb{P}(B)$, we have

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)} \mathbb{P}(A).$$

Interpretation: Start with estimate $\mathbb{P}(A)$ for A. After receiving new information, perform a **Bayesian update** to restrict the sample space to B.

•
$$\frac{\mathbb{P}(B|A)}{\mathbb{P}(B)}$$
 measures how strong the evidence is

- If $\mathbb{P}(B \mid A) = 0$, A and B are mutually exclusive.
- ▶ We have $\frac{\mathbb{P}(B|A)}{\mathbb{P}(B)} \leq \frac{1}{\mathbb{P}(A)}$, with equality if and only if $\mathbb{P}(A \cap B) = \mathbb{P}(B)$.

Draw a card at random from a deck. Define the events

$$A = \{ card is ace of spades \}$$
$$B = \{ suit of card is from spades \}.$$

To start, we know that $\mathbb{P}(A) = \frac{1}{52}$. If we now know that *B* occurred, we may update by

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)} \mathbb{P}(A) = \frac{1}{1/4} \cdot \frac{1}{52} = \frac{1}{13}.$$

We may update as further information emerges about the card.

Bayesian updating in the real world...

We can assign probabilites to events which have not yet happened:

𝒫(Biden wins election again)
 𝒫(Chicago Cubs win the World Series)
 𝒫(stock prices will go up this year).

According to Thomas Bayes:

 $\mathbb{P}(A) := \{ \text{value of right to get } \$1 \text{ if event occurs} \}.$

This creates philosophical questions:

- Does this "value" have a well-defined price?
- ► How is P(A) defined when there are no enforceable financial contracts?
- Can we use this interpretation (and Bayes' rule) in everyday reasoning?

Equal likelihood

Inclusion-Exclusion

Conditional probability

Bayes' rule

Independence

Events *E* and *F* are **independent** if $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$.

- Equivalent formulation: $\mathbb{P}(E \mid F) = \mathbb{P}(E)$
- Equivalent formulation: $\mathbb{P}(F \mid E) = \mathbb{P}(F)$

Intuitively: knowing E occurred does not change the likelihood that F occurred, and vice versa.

Are the following events independent?

- ► Flip two coins: {first coin H} and {second coin H}
- ► Flip two coins: {first coin H} and {total of 2 Hs}
- ► Flip two coins: {first coin H} and {odd number of H}
- Draw two cards from same deck: {first card K} and {second card Q}
- Randomly find a patient from a hospital: {age 0-15} and {hospitalized for infection}
- Randomly find a patient from a hospital: {first name starts with A} and {hospitalized for infection}

Events E_1, \ldots, E_n are **independent** if for each $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ we have $\mathbb{P}(E_{i_1} \cap \cdots \cap E_{i_k}) = \mathbb{P}(E_{i_1})\mathbb{P}(E_{i_2}) \cdots \mathbb{P}(E_{i_k}).$

Implies statements like $\mathbb{P}(E_1 \cap E_2 \mid E_3 \cap E_4 \cap E_5) = \mathbb{P}(E_1 \cap E_2).$

Pairwise independence does not imply independence:

Consider {first coin H}, {second coin H}, {odd number of H}

Shuffle 4 cards labeled 1, 2, 3, 4. Let

 $E_{i,j} = \{ \text{card } i \text{ comes before card } j \}.$

Is $E_{1,2}$ independent of $E_{3,4}$?

Is $E_{1,2}$ independent of $E_{1,3}$?

Independence: examples

What is $\mathbb{P}(E_{1,2} | E_{1,3})$?

What is $\mathbb{P}(E_{1,7} | E_{1,2} \cap E_{1,3} \cap \cdots \cap E_{1,6})$?

Suppose you roll a fair dice repeatedly. What is the probability that you get a 6 for the first time, on the 3rd roll?

Suppose you draw three card at random from a standard deck. If we get a number $(2, 3, \ldots, 10)$, that value is the number of points earned.

If we get a J, Q, or K, then we earn 10 points. An A earns 0 points.

What is the prob. that you earn 10 points, then 5 points, then 10 points?