
Math 18500 Week 7: Partial Differential Equations and Fourier Transforms

Partial Differential Equations. Up to this point we have only considered ordinary differential equations.
By definition, an ordinary differential equation is a relationship between an unknown function y = y(x) and
its derivatives:

F (x, y, y′, . . . , y(n−1), y(n)) = 0

Note that in this context the unknown function is always a function of a single variable.

Sometimes it is necessary to solve for an unknown function of more than one variable,

y = y(x1, x2, . . . , xn),

given a relationship between that function and its partial derivatives,

F

(
xi,

∂y

∂xi
,

∂2y

∂xi∂xj
, . . .

)
= 0

An equation like this is called a partial differential equation.

If you only know about three partial differential equations, the ones you should know are:

(1) The heat or diffusion equation:

∂u

∂t
− α2 ∂

2u

∂x2
= ρ(x, t)

(2) The wave equation:

∂2u

∂t2
− 1

c2
∂2u

∂x2
= ρ(x, t)

(3) The Poisson equation:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= −ρ(x, y, z)

In the case of both the heat and the wave equation, we are trying to solve for an unknown function u = u(x, t)
whose variables are x and t. You can think of x as representing position and t as representing time. Each of
these equations can be thought of as modelling a function of position, which is changing over time.

For example, the heat equation can be used to model the temperature of a metal rod. Imagine putting one
end of the rod into a fire. The end which is in the fire will have a higher temperature than the end you
are holding, and there will be a range of temperatures inbetween. That is, the temperature is a function of
position within the rod.

Now suppose you remove the rod from the fire. In this case, the heat which is concentrated at one end of
the rod will diffuse throughout the rod, and eventually the entire rod will have an even temperature. This
shows that the temperature is also a function of time, so we need a partial differential equation to model it.

In the heat equation, the scalar α2 is a constant, which represents the rate of heat diffusion. The function
ρ(x, t) represents an external source of heat (such as the fire) which is transferring heat to the rod.

The wave equation can be used to model the propagation of waves. You can think of the function u(x, t) as
representing the height of the wave. The constant c represents the speed of propagation - it is measured in
units of distance over time. The function ρ(x, t) represents a source which is generating the waves.

In the Poisson equation all of the variables should be interpreted spatially - the unknown function u(x, y, z)
is a function of position only. One possible interpretation is that u(x, y, z) represents the electric potential
due to a collection of charges - with this interpretation, the function ρ(x, y, z) on the right hand side of the
equation can be thought of as the charge density of a static charge distribution which generates the electric
field.

The operator

~∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

1
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which appears on the left hand side of the Poisson equation is called the Laplace operator, and it appears in
many other partial differential equations. For example, the heat and wave equations both have 3-dimensional
versions, which involve a Laplace operator instead of a second derivative:

∂u

∂t
− α2~∇2u = ρ(x, y, z, t)

∂2u

∂t2
− c2~∇2u = ρ(x, y, z, t)

From this point of view, solutions of the Laplace equation represent steady state solutions of the heat or
wave equation, i.e. solutions which satisfy ∂u

∂t = 0 and therefore do not change over time.

Just as we need to impose initial conditions in order to uniquely specify a solution of an ordinary differential
equations, we typically need to impose boundary conditions in order to uniquely specify a solution of a partial
differential equation.

For example, when we use the heat equation to model the temperature distribution in an insulated metal
rod, one possible choice of boundary conditions is

∂u

∂x
(0, t) = 0 ,

∂u

∂x
(L, t) = 0 , u(x, 0) = f(x)

Here L is the length of the rod - we have placed one end at x = 0 and the other end at x = L. To understand
why these are called boundary conditions, you have to think about the two-dimensional region on which
the function u(x, t) is defined. We are only considering values of x such that 0 ≤ x ≤ L, corresponding
to locations in the rod, and values t such that t ≥ 0, i.e. all times after some initial time. Overall, these
inequalities define an infinite vertical strip in the xt plane:

x

t

L0

The boundary conditions give us various kinds of information about the function’s behavior on the three
parts of the boundary of this region (the two vertical lines, and the horizontal segment).

The first two conditions relate to the vertical lines. Intuitively, they tell us that the ends of the rod are
insulated and do not conduct any heat.1 Boundary conditions of this type (which specify the behavior of
derivatives of u at a point on the boundary of the region) are called Neumann conditions.

The third condition is more analogous to the usual concept of specifying the initial value of a solution to a
first order ordinary differential equation - it means that we are specifying an initial temperature distribution
within the rod at time t = 0. Boundary conditions of this type (which specify the value of the function at a
point on the boundary of the region) are usually called Dirichlet conditions.

1More specifically, the total heat within the rod at time t can be defined by

Q =

∫ L

0
u(x, t)dx

The heat equation tells us that

dQ

dt
=

∫ L

0

∂u

∂t
(x, t)dx = α2

∫ L

0

∂2u

∂x2
(x, t)dx = α2 ∂u

∂x
(L, t) − α2 ∂u

∂x
(0, t)

We can interpret the two terms on the right hand side as the rates at which heat is being lost from the two ends of the rod -

the Neumann conditions say that heat is not being lost from either end.
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Typically, when you solve partial differential equations, you need to apply some combination of these two
types of boundary conditions. Exactly how this is done will depend not only on the type of equation you
are trying to solve, but also the specific application you have in mind.

In the context of the heat equation (or any other equation which involves a time variable), conditions satisfied
at time t = 0 are usually referred to as initial conditions rather than boundary conditions. So, we would
usually say that the boundary value problem

∂u

∂t
− α2 ∂

2u

∂x2
= 0

∂u

∂x
(0, t) = 0 ,

∂u

∂x
(L, t) = 0 , u(x, 0) = f(x)

has Neumann boundary conditions and an initial condition.
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The Heat Equation on an Interval. The reason why we are discussing partial differential equations now
is that most of the important applications of Fourier series involve partial differential equations. Indeed,
when Fourier invented Fourier series, his goal was to solve the heat equation!

To explain what Fourier was doing, consider the heat equation without a source term,

∂u

∂t
− α2 ∂

2u

∂x2
= 0

and the Dirichlet boundary conditions

u(0, t) = 0 , u(L, t) = 0

u(x, 0) = f(x)

Solving the heat equation with these boundary conditions can be interpreted as finding the temperature
distribution in an insulated metal rod as a function of time, where the ends of the rod are maintained at
room temperature (the arbitrarily chosen 0 of our temperature scale).

The process which Fourier used to solve this equation involved three steps:

(1) Find all nonzero separated solutions.
(2) Among the separated solutions, determine which ones satisfy the boundary conditions,

u(0, t) = 0 , u(L, t) = 0,

but not necessarily the initial condition

u(x, 0) = f(x).

(3) Superimpose the separated solutions to obtain a solution which does satisfy the initial condition.

To explain the final step, notice that the operator on the left hand side of the heat equation,

∂

∂t
− α2 ∂

2

∂x2

is a linear operator, the overall equation
∂u

∂t
− α2 ∂

2u

∂x2
= 0

is homogeneous, and the boundary conditions

u(0, t) = 0 , u(L, t) = 0

are also homogeneous (the right hand side is 0). Therefore, given solutions un(x, t) which satisfy the boundary
conditions,

∂un
∂t
− α2 ∂

2un
∂x2

= 0

un(0, t) = 0 , un(L, t) = 0,

any linear combination

u(x, t) =
∑
n

cnun(x, t)

will also be a solution satisfying the boundary conditions:

∂u

∂t
− α2 ∂

2u

∂x2
=
∑
n

cn

(
∂un
∂t
− α2 ∂

2un
∂x2

)
=
∑
n

0 = 0

u(0, t) =
∑
n

cnun(0, t) =
∑
n

0 = 0

u(L, t) =
∑
n

cnun(L, t) =
∑
n

0 = 0

So, we can hope to construct a solution satisfying the initial conditions by finding enough particular solutions
un through guesswork. Specifically, we must find enough particular solutions that an arbitrary function f(x)
can be expressed as a linear combination of their initial values, i.e. there are values of cn such that∑

n

cnun(x, 0) = f(x)
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Following Fourier’s first step, we look for particular solutions which are separated. By definition, a separated
solution is an ansatz of the special form

u(x, t) = T (t)X(x)

where T is a function of t and X is a function of x.2 You can see why this kind of ansatz is a good idea if
you substitute it into the heat equation:

∂

∂t
[T (t)X(x)] = α2 ∂

2

∂x2
[T (t)X(x)]

T ′(t)X(x) = α2T (t)X ′′(x)

Assuming that u is nonzero, we know that both T and X must be nonzero, so we can divide by them:

T ′(t)

T (t)
= α2X

′′(x)

X(x)

Notice a strange property of this equation: on the left side we have a function which is independent of x,
and on the right side we have a function which is independent of t.

So, in order for the two sides of the equation to be equal, they must both be independent of both x and t!
This implies that both sides are equal to a constant, which is conventionally denote by λ:

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= λ

Therefore, to find the separated solutions we must solve the separate equations

X ′′(x) = λX(x)

T ′(t) = α2λT (t)

At this point we know the solutions of these equations by heart:

X = ae
√
λx + be−

√
λx

T = ceα
2λt

At least, these are the solutions if λ 6= 0. In the case λ = 0, the equations become

X ′′(x) = λX(x) = 0

T ′(t) = α2λT (t) = 0

and therefore
X = a+ bx

T = c

Multiplying these together, we obtain

u(x, t) = T (t)X(x) = ac+ bcx = A+Bx

Note that we have absorbed the constants a and c into a single constant A, and we have absorbed the
constants b and c into a single constant B.

For the case λ 6= 0, the square root in the formula for X is a bit annoying, so we introduce the change of
variables

λ = −µ2

With this notation, we have
X = aeiµx + be−iµx

T = ce−α
2µ2t

Multiplying these together, we obtain

u(x, t) = T (t)X(x) = e−α
2µ2t

(
Aeiµx +Be−iµx

)
where we have again combined some arbitrary constants.

2Admittedly, it is a bit confusing to use the same letter for the function and the variable! Unfortunately, this notation is

standard for applications of the separation of variables technique, so you have to get used to it.
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Having completed the first step and found all of the nonzero separated solutions, we now impose our desired
boundary conditions,

u(0, t) = u(L, t) = 0

In the case µ = 0 the only way these conditions can be satisfied is if

A+Bx|x=0 = A+B · 0 = A = 0

A+Bx|x=1 = A+B · 1 = A+B = 0

These equations imply that A = B = 0, hence u = 0. So, if µ = 0 there is no non-zero separated solution
which satisfies the boundary conditions.

In the case µ 6= 0 (or equivalently λ 6= 0), the only way the boundary conditions can be satisfied is if

e−α
2µ2t

(
Aeiµx +Be−iµx

)∣∣∣
x=0

= (A+B)e−α
2µ2t = 0

and

e−α
2µ2t

(
Aeiµx +Be−iµx

)∣∣∣
x=0

= (AeiµL +Be−iµL)e−α
2µ2t = 0

for all values of t. Dividing by the exponential term (which is always nonzero), these equations simplify to

A+B = 0

AeiµL +Be−iµL = 0.

Replacing B with −A in the second equation, and then dividing by A, we obtain

eiµL − e−iµL = 0

eiµL = e−iµL

e2iµL = 1

The only way the last identity can be satisfied is if

2µL = 2πn,

for some integer n. Rearranging, we have

µ =
nπ

L
and therefore the most general separated solution which satisfies the boundary conditions is

un(x, t) = bne
−α2(nπL )

2
t

(
e
πinx
L − e−πinxL

2i

)
= bne

−α2π2n2t

L2 sin
(πnx
L

)
,

where bn = 2iA is an arbitrary constant.

Superimposing the separated solutions, we obtain

u(x, t) =

∞∑
n=1

un(x, t) =

∞∑
n=1

bne
−α2π2n2t

L2 sin
(πnx
L

)
Notice that we have not included u0(x, t), because it is equal to 0, and would not contribute to the sum.
Also, we have not included terms un(x, t) with n < 0, because un(x, t) and u−n(x, t) are scalar multiples of
each other, and can be combined into a single term.

Substituting t = 0, imposing the initial condition u(x, 0) = f(x), we find that

u(x, 0) =

∞∑
n=1

bn sin
(πnx
L

)
= f(x)

As we have seen, the values of bn are uniquely determined by this equation! In particular, we know that
they can be found by evaluating the following integrals:

bn =
2

L

∫ L

0

f(x) sin
(πnx
L

)
dx

Evaluating these integrals and substituting their values back into the formula for u(x, t) results in a solution
that satisfies the initial condition u(x, 0) = f(x). But notice that it is only logically valid to draw this
conclusion if we make the assumption that it is possible to write f(x) as a sine series in the first place!



7

At this point, Fourier went ahead and boldly asserted that every solution of the heat equation could be
written as a sum of separated solutions. This assumption implied that any function could be written as a
sine series, because presumably nature knows how to solve the heat equation with arbitrary initial conditions!

To be clear, there was a certain amount of hubris in Fourier’s assertion - just because you happen to have
guessed a whole bunch of solutions of an equation, it doesn’t mean you’ve found all possible solutions of the
equation! Because of this logical leap, Fourier’s assertion was rejected by many mathematicians of his time.

Later, mathematicians resolved the controversy in Fourier’s favor, and gave a rigorous proof that every
periodic function has a Fourier series. But it is interesting to think that this remarkable fact might never
have been discovered had there not been a concrete physical problem whose solution required it!
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Fourier Transforms. We have seen that any 2π-periodic function f(t) can be written as a Fourier series,

f(t) =

∞∑
n=−∞

cne
int

where the coefficients are given by

cn =
1

2π

∫ π

−π
f(t)e−intdx

This allows us to think of any periodic function in the “frequency domain”, i.e. as a superposition of sinusoids
with various amplitudes and frequencies.

Unfortunately, Fourier series are not sufficient for many applications, for two reasons:

(1) It is often necessary to consider functions which are not periodic.
(2) It is often necessary to consider superpositions of sinusoids with arbitrary frequencies (i.e. a set of

frequencies which are not integer multiples of a single base frequency).

These reasons are related - if we superimpose two sinusoids whose frequencies are not integer multiples of a
common base frequency, then the result is never a periodic function. For example, try graphing the function

f(t) = sin(t) + sin(πt)

on your computer - you will see that it never repeats itself!

Fortunately there is a generalization of Fourier series which is valid even for non-periodic functions. Given
a function f(t), we define its Fourier transform to be the function

f̂(k) =

∫ ∞
−∞

f(t)e−iktdt.

Notice that f̂ is a function of a new variable k, which takes arbitrary real values (not just integers).

Also notice that the Fourier transform is linear. This means that if f(t) is a linear combination of functions,

f(t) = c1f1(t) + c2f2(t)

then its Fourier transform is the corresponding linear combination of the Fourier transforms,

f̂(t) = c1f̂1(t) + c2f̂2(t).

When we want to emphasize this property of the Fourier transform, we will use the following notation:

F [f(t)] = f̂(k)

With this notation, the linearity of the Fourier transform can be expressed as follows:

F [c1f1(t) + c2f2(t)] = c1F [f1(t)] + c2F [f2(t)]

Fourier transforms are useful because of the Fourier inversion formula,

f(t) =
1

2π

∫ ∞
−∞

f̂(k)eiktdk,

which is valid as long as f(t) satisfies certain technical conditions (to be described later).

To express this result in operator notation, we can define the inverse Fourier transform,

F−1 [g(k)] =
1

2π

∫ ∞
−∞

g(k)eiktdk

Then the Fourier inversion formula can be stated as follows:

f(t) = F−1 [F [f(t)]]

Similarly, we also have

g(k) = F
[
F−1 [g(k)]

]
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Applying the Fourier inversion formula is analogous to writing a periodic function as a Fourier series

f(t) =

∞∑
n=−∞

cne
int

but instead of summing over all integer frequencies, we are integrating over all real frequencies.

To better understand the inversion formula, suppose that f(t) is zero except within an interval of finite size:

t

f(t)

t0 t1

For example, f(t) could represent a radio signal starting at time t0 and ending at time t1.

In a situation like this, we can always pick an arbitrarily large number T such that

−T
2
< t0 < t1 <

T

2

and then consider the T -periodic function f̃(t) which is equal to f(t) for −T2 < t < T
2 :

t

f̃(t)

−T2
T
2

Then the Fourier series of f̃(t),

f̃(t) =

∞∑
n=−∞

cne
2πin
T ,

is equal to f(t) on the interval [−T2 ,
T
2 ], and its coefficients are given by

cn =
1

T

∫ T
2

−T2
f(t)e−

2πint
L dt.

As long as the original function f(t) is equal to zero outside of the interval [−T, T ], we can rewrite this as

cn =
1

T

∫ ∞
−∞

f(t)e−
2πint
L dt.

At this point, we can define

kn =
2πn

T
to be the frequency of the nth term in the sum. Then the spacing between consecutive frequencies,

∆k = kn+1 − kn =
2π(n+ 1)

T
− 2πn

T
=

2π

T
,
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gets extremely small as T →∞, and we can rewrite the formula for cn as

cn =
∆k

2π

∫ ∞
−∞

f(t)e−ikntdt =
1

2π
∆kf̂(kn)

With this notation, we have

f(t) =
1

2π

∞∑
n=−∞

f̂(kn)eiknt∆k,

and in the limit as T →∞ the sum converges to an integral,

f(t) =
1

2π

∫ ∞
−∞

f̂(k)e−iktdk.

This proves that the Fourier inversion formula is valid for functions which are zero outside a finite interval.

Some care is required to extend this idea to functions which are nonzero for an infinite range of values of t,
but it is still correct in this case, as long as

f(t)→ 0

sufficiently rapidly as t→ ±∞. More precisely, it is valid to use the Fourier inversion formula as long as∫ ∞
−∞
|f(t)|2dt <∞.

For functions like

f(t) =
1√

1 + |t|
which do not satisfy this condition, it is invalid to apply the Fourier inversion formula.

As an application of Fourier inversion, consider the function

f(t) = e−|t| =

{
e−t t > 0
et t < 0

Its Fourier transform is given by

f̂(k) =

∫ 0

−∞
ete−iktdt+

1

2π

∫ ∞
0

e−te−iktdt

=

(
e(1−ik)t

1− ik

∣∣∣∣0
−∞

+
e(−1−ik)t

−1− ik

∣∣∣∣∞
0

)

=

(
1

1− ik
− 1

−1− ik

)
=

(
2

1 + k2

)
Therefore, the Fourier inversion formula tells us that

f(t) = e−|t| =
1

π

∫ ∞
−∞

eikt

1 + k2
dk

Notice that the imaginary part of the integral on the right cancels out, because

sin(kt)

is an odd function of k. Therefore, we could also write the above identity as

e−|t| =
1

π

∫ ∞
−∞

cos(kt)

1 + k2
dk

The integral on the right is extremely difficult to evaluate directly, except in the special case t = 0:

1

π

∫ ∞
−∞

1

1 + k2
dk =

1

π
tan−1(k)

∣∣∣∣∞
−∞

=
π

2π
−
(
− π

2π

)
= 1
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In fact, it is usually rather difficult to calculate Fourier transforms and inverse Fourier transforms directly.
Fortunately, the Fourier transform has a number of useful properties which can be applied to make this a
bit easier. Here is one such property (arguably the most important one):

(∗) If g(t) = d
dt [f(t)], then ĝ(k) = ikf̂(k).

This property can be derived using integration by parts:

ĝ(k) =

∫ ∞
−∞

f ′(t)e−iktdt = f(t)e−ikt
∣∣∞
−∞ −

∫ ∞
−∞

f(t)
(
−ike−ikt

)
dt = ikf̂(k)

Notice that this computation is only valid if we make the assumption

lim
t→±∞

f(t) = 0.

Again, this follows from the condition ∫ ∞
−∞
|f(t)|2dt <∞

which we must always assume, in order to apply the Fourier transform.

As an example of applying this property, suppose we want to find a solution of the second order ODE

y′′ + y′ + y = e−|t|.

To solve the equation, we could take the Fourier transform of both sides:

(ik)2ŷ(k) + (ik)ŷ(k) + ŷ(k) =
2

(1 + k2)

This gives the Fourier transform of the solution,

ŷ(k) =
2

(1 + k2)((1− k2) + ik)

and we can recover the solution via Fourier inversion:

y(t) =
1

2π

∫ ∞
−∞

ŷ(k)eiktdk =
1

2π

∫ ∞
−∞

2eikt

(1 + k2)((1− k2) + ik)
dt

This is a fine method, but it has some issues:

(1) It only gives solutions for which Fourier inversion is valid, i.e. solutions y(t) which satisfy∫ ∞
−∞
|y(t)|2dt <∞.

We do not obtain general solutions of the equation, with arbitrary initial values.
(2) In order to obtain the solution, we need to compute a nasty integral!

Next week we will introduce the Laplace transform, which is a modification of the Fourier transform that is
specifically adapted to solving initial value problems. This will resolve difficulty (1) but not difficulty (2).

To resolve difficulty (2), we will derive a number of properties of Laplace transforms and use these properties
to construct a table of Laplace transforms. This will allow us to reconstruct the solution from its Laplace
transform - we just look it up in the table.
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The Heat Equation on the Line. This section is optional but recommended - in it we will use Fourier
transforms to solve the heat equation

∂u

∂t
− α2 ∂

2u

∂x2
= 0 , u(x, 0) = f(x)

on the entire real line, without any boundary conditions. In doing so we will encounter the concept of a
convolution, which will play an important role in the context of Laplace transforms.

The idea we will use to solve the heat equation is to take the Fourier transform of both sides with respect
to the x variable. The result will be an equation involving the Fourier transform

û(k, t) =

∫ ∞
−∞

u(x, t)e−ikxdx

which we will be able to solve easily.

Before we try out this strategy, notice that the initial value of u(x, t) determines the initial value of û(k, t):

û(k, 0) =

∫ ∞
−∞

u(x, 0)e−ikxdx =

∫ ∞
−∞

f(x)e−ikxdx = f̂(k)

We will use this fact momentarily.

Now let’s try to implement the strategy. Taking the Fourier transform of both sides of the equation,

F
[
∂u

∂t
− α2 ∂

2u

∂x2

]
= F [0]

and applying the linearity property of the Fourier transform, we get

F
[
∂u

∂t

]
− α2F

[
∂2u

∂x2

]
= 0

To deal with the first term on the left, notice that

F
[
∂u

∂t

]
=

∫ ∞
−∞

∂u

∂t
(x, t)e−ikxdx =

∂

∂t

[∫ ∞
−∞

u(x, t)e−ikxdx

]
=

∂

∂t
[û(k, t)]

where in the second step we brought the derivative out from under the integral. To make the notation less
terrible we can write this as follows:

F
[
∂u

∂t

]
=
∂û

∂t
.

To deal with the second term on the left, apply property (∗) of the Fourier transform, which was stated in
the previous section. This gives:

α2F
[
∂2u

∂x2

]
= α2(ik)2F [u] = −(αk)2û

Substituting, we find that
∂û

∂t
− α2k2û = 0

This is an ordinary differential equation, whose solution we know! The solution depends on the initial value

û(k, 0), which we have seen is equal to f̂(k):

û(k, t) = û(k, 0)e−α
2k2t = f̂(k)e−α

2k2t.

To obtain the solution u(x, t), we can just apply the inverse Fourier transform:

u(x, t) = F−1
[
f̂(k)e−α

2k2t
]

=
1

2π

∫ ∞
−∞

f̂(k)e−α
2k2teikxdk

Now, you might say this is the end of the story - we obtained a somewhat messy but explicit formula for the

solution. But what we really want is a formula in terms of f(x), not in terms of f̂(k)!
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This desire leads us to consider a more general problem. Suppose we have two functions f(x) and g(x), and
we take their Fourier transforms:

f̂(k) =

∫ ∞
−∞

f(v)e−ikvdu

ĝ(k) =

∫ ∞
−∞

g(u)e−ikudv

In this situation, we can multiply the Fourier transforms,

f̂(k)ĝ(k)

and ask, what is its inverse Fourier transform, in terms of f(x) and g(x)?

To find out, we can combine the product into a double integral:

f̂(k)ĝ(k) =

(∫ ∞
−∞

f(v)e−ikvdv

)(∫ ∞
−∞

g(u)e−ikudu

)
=

∫ ∞
−∞

∫ ∞
−∞

f(v)g(u)e−ik(v+u)dvdu.

To simplify the double integral, we make the substitution (u, v) = (x− v, v):

f̂(k)ĝ(k) =

∫ ∞
−∞

∫ ∞
−∞

f(v)g(x− v)e−ikxdvdx

and observe that the right hand side is a Fourier transform:

f̂(k)ĝ(k) =

∫ ∞
−∞

[∫ ∞
−∞

f(v)g(x− v)dv

]
e−ikxdx = F

[∫ ∞
−∞

f(v)g(x− v)dv

]
Taking the inverse Fourier transform of both sides, we conclude that

F−1
[
f̂(k)ĝ(k)

]
=

∫ ∞
−∞

f(v)g(x− v)dv

The expression on the right hand side is called the convolution of the functions f(x) and g(x). It is a bit
frustrating that multiplying two Fourier transforms leads to a convoluted inverse transform, but that’s life!

Anyway, applying the result above to our solution of the heat equation, we have

u(x, t) = F−1
[
f̂(k)e−α

2k2t
]

=

∫ ∞
−∞

f(v)φ(x− v, t)dv

where φ(x, t) is the function whose Fourier transform (with respect to x) is

φ̂(k, t) = e−α
2k2t

To find this function explicitly, we need to apply the inverse Fourier transform. The result turns out to be

φ(x, t) = F−1
[
e−α

2k2t
]

=
1√

4πα2t
e−

x2

4α2t

You can check that the function φ(x, t) is itself a solution of the heat equation - it is called the fundamental
solution. If you plot it for a range of values of t you can see that it describes a heat distribution that is
initially concentrated in an infinitely small interval centered at x = 0, and spreads out over time. Here is an
animation:

https://www.geogebra.org/calculator/j52gabqp

To understand the meaning of the formula

u(x, t) =

∫ ∞
−∞

f(v)φ(x− v, t)dv,

you may find it more intuitive to think in terms of diffusion of a gas in a narrow tube (instead of diffusion of
heat in a narrow rod). With this interpretation of the equation, u(x, t) represents the concentration of the
gas (number of molecules per unit length of the tube), and f(x) = u(x, 0) represents the initial concentration
at time t = 0. With this interpretation, the quantity

f(v)dv

https://www.geogebra.org/calculator/j52gabqp
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represents the number of gas molecules which are initially located in a small interval [v, v + dv] on the x
axis. As time passes, these molecules drift away and spread out, and after a time t they are distributed
throughout space - the concentration at a given location x can be expressed as

f(v)φ(x− v, t)dv.
But this represents just one contribution to the overall concentration, since we have only considered gas
molecules which started at a particular initial location. To obtain the overall concentration, we must integrate
over all possible initial locations. This is one interpretation of the formula

u(x, t) =

∫ ∞
−∞

f(v)φ(x− v, t)dv.

To read about an application of this formula in image processing, see

https://en.wikipedia.org/wiki/Gaussian_blur

The idea is to let the intensity of each pixel in a digital image diffuse outward to the neighboring pixels. The
result is a blurry image - the greater the value of t, the blurrier the result.

When you do this you don’t actually solve the diffusion equation, you just apply the convolution formula.
But of course, you use the 2D generalization of the formula, not the 1D version given here - there is a formula
in the linked article.

Now, it might seem like blurring an image would always be a bad idea in scientific applications, since blurring
appears to destroy potentially important information. However, you might view this as a good thing in cases
where the original image contains too much information.

To make this more precise, we can go back to our original formula for the Fourier transform of the solution:

û(k, t) = f̂(k)e−α
2k2t.

Notice that the factor
e−α

2k2t

is close to 1 for small values of k, and close to 0 for large values of k. So, blurring has the effect of reducing
the intensity of the high frequency Fourier components (which are often regarded as unnecessary “noise”).
From this point of view, blurring reduces noise and makes it easier to correctly analyze the image.

https://en.wikipedia.org/wiki/Gaussian_blur
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