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Where are we?

Tossing coins

Gaussian random variables

Special case of central limit theorem



Tossing coins

How many heads will we get from a million fair coin tosses?

I To first order, the expectation is 500, 000.

I How close will the answer be to the expectation?



Tossing coins

What is the probability of getting k heads from n coin tosses?

P(X = k) =

(n
k

)
2n
.

Let’s see a rough plot...



Where are we?

Tossing coins

Gaussian random variables

Special case of central limit theorem



Standard Gaussian random variables

We define a standard Gaussian random variable to have density

fX (x) =
1√
2π

e−
1
2
x2 .

This is also called a normal random variable.

Notice that[∫ ∞
−∞

fx(x)dx

]2
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
1
2
(x2+y2)dxdy

=
1

2π

∫ ∞
0

∫ 2π

0
e−r

2/2r dθdr

= [−e−r2/2]∞0 = 1.



Standard Gaussian random variables

We define a standard Gaussian random variable to have density

fX (x) =
1√
2π

e−
1
2
x2 .

By symmetry we compute

E[X ] =

∫ ∞
−∞

x
1√
2π

e−
1
2
x2dx = 0.

We may also compute

Var(X ) = E[X 2] =

∫ ∞
−∞

x2
1√
2π

e−
1
2
x2dx = 1.



Gaussian random variables

Let X be standard Gaussian. Consider Y = σX + µ. It has density

fY (y) =
1√
2πσ

e−
(x−µ)2

2σ2

and mean and variance

E[Y ] = µ and Var(Y ) = σ2.



Cumulative distribution function

Let X be standard Gaussian. The CDF is

FX (x) :=
1√
2π

∫ x

−∞
e−

1
2
x2dx .

It does not have explicit representation. Instead

Φ(x) = FX (x)

is called the error function. Some values are:

Φ(−1) ≈ 0.159 Φ(−2) ≈ 0.023 Φ(−3) ≈ 0.0013.

This means ≈ 95 percent of the time a Gaussian is within 1
standard deviation of the mean.
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DeMoivre-Laplace Limit Theorem

Let Sn be the number of heads in n tosses of a coin which is heads
with probability p. We have

Var(Sn) = np(1− p) =⇒ std. dev. =
√
np(1− p).

The number of standard deviations away from the mean is

Sn − np√
np(1− p)

.

Theorem (DeMoivre-Laplace)

We have that

lim
n→∞

P
(
a ≤ Sn − np√

np(1− p)
≤ b

)
= Φ(b)− Φ(a),

where Φ(b)− Φ(a) = P(a ≤ X ≤ b) for a standard Gaussian X .

This is why we used normalizing factor in the movie.



Examples

Approximate the probability that we get more than 501, 000 heads
in a million fair coin tosses.

I The standard deviation is
√
np(1− p) = 500 and 1000 = 500 · 2.

I The answer is approximately

1− Φ(2) = Φ(−2) ≈ 0.023.


	Tossing coins
	Gaussian random variables
	Special case of central limit theorem

