Lecture 13: Gaussian distribution Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago

Tossing coins

Gaussian random variables

Special case of central limit theorem

How many heads will we get from a million fair coin tosses?

- ► To first order, the expectation is 500,000.
- How close will the answer be to the expectation?

What is the probability of getting k heads from n coin tosses?

$$\mathbb{P}(X=k)=\frac{\binom{n}{k}}{2^n}.$$

Let's see a rough plot...

Tossing coins

Gaussian random variables

Special case of central limit theorem

Standard Gaussian random variables

We define a standard Gaussian random variable to have density

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

This is also called a **normal** random variable.

Notice that

$$\left[\int_{-\infty}^{\infty} f_x(x)dx\right]^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2+y^2)}dxdy$$
$$= \frac{1}{2\pi} \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2/2}r \, d\theta dr$$
$$= [-e^{-r^2/2}]_{0}^{\infty} = 1.$$

Standard Gaussian random variables

We define a standard Gaussian random variable to have density

$$f_X(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}.$$

By symmetry we compute

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 0.$$

We may also compute

$$\operatorname{Var}(X) = \mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 1.$$

Let X be standard Gaussian. Consider $Y = \sigma X + \mu$. It has density

$$f_Y(y) = rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

and mean and variance

$$\mathbb{E}[Y] = \mu$$
 and $\operatorname{Var}(Y) = \sigma^2$.

Cumulative distribution function

Let X be standard Gaussian. The CDF is

$$F_X(x):=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{1}{2}x^2}dx.$$

It does not have explicit representation. Instead

$$\Phi(x)=F_X(x)$$

is called the error function. Some values are:

$$\Phi(-1) \approx 0.159 \qquad \Phi(-2) \approx 0.023 \qquad \Phi(-3) \approx 0.0013.$$

This means \approx 95 percent of the time a Gaussian is within 1 standard deviation of the mean.

Tossing coins

Gaussian random variables

Special case of central limit theorem

DeMoivre-Laplace Limit Theorem

Let S_n be the number of heads in n tosses of a coin which is heads with probability p. We have

$$\operatorname{Var}(S_n) = np(1-p) \implies \text{std. dev.} = \sqrt{np(1-p)}.$$

The number of standard deviations away from the mean is

$$\frac{S_n - np}{\sqrt{np(1-p)}}$$

Theorem (DeMoivre-Laplace) We have that

$$\lim_{n\to\infty}\mathbb{P}\Big(a\leq \frac{\mathsf{S}_n-np}{\sqrt{np(1-p)}}\leq b\Big)=\Phi(b)-\Phi(a),$$

where $\Phi(b) - \Phi(a) = \mathbb{P}(a \le X \le b)$ for a standard Gaussian X. This is why we used normalizing factor in the movie. Approximate the probability that we get more than 501,000 heads in a million fair coin tosses.

• The standard deviation is $\sqrt{np(1-p)} = 500$ and $1000 = 500 \cdot 2$.

The answer is approximately

$$1 - \Phi(2) = \Phi(-2) \approx 0.023.$$