
Lecture 1: Random Variables and Convergence.

Zhongjian Wang∗

Abstract

Classnotes on random variables, random number generation, distribution and
convergence

1 Basic Notion and Examples

Consider throwing a die, there are 6 possible outcomes, denoted by ωi, i = 1, · · · , 6; the set

of all outcomes Ω = {ω1, · · · , ω6}, is called sample space.

A subset of Ω, e.g. A = {ω2, ω4, ω6}, is called an event. Suppose we did N times of

die experiment, event A happened Na times, then the probability of event A is P (A) =

limN→∞Na/N . For a fair die, P (A) = 1/2.

Let the collection of events be A, A a sigma-algebra of all events, meaning (1) if E ∈
A, then Ec ∈ A; (2) if Ei ∈ A, i countable, then ∪iEi ∈ A. The triple (Ω, A, P ) is

called a probibility space. P is a function assigning probability to events, more precisely, a

probability measure satisfyng: (1) P (E) ≥ P (Φ) = 0, Φ null event, (2) if Ei are countably

many disjoint events, P (∪iEi) =
∑

i P (Ei), (3) P (Ω) = 1.

The events E and F are independent, if:

P (E ∩ F ) = P (E)P (F ),

and conditional probability P (E|F ) is:

P (E|F ) = P (E ∩ F )/P (F ).

A random variable r.v. X(ω) is a function: Ω → R such that {ω ∈ Ω : X(ω) ≤ a} is

an event. The distribution function of X(ω) is:

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}), (1.1)
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satisfying:

(1) limx→−∞ FX(x) = 0, limx→+∞ FX(x) = 1.

(2) FX(x) is nondecreasing, right continuous ({X ≤ y} → {X ≤ x} as y → x+ 0).

(3) FX(x−) = P (X < x) ({X ≤ y} → {X < x} as y → x− 0).

(4) P (X = x) = FX(x)− FX(x−).

Conversely, if F satisfies (1)-(3), it’s a distribution function of some r.v.

When FX is absolutely continuous, we have a density function p(x) such that:

F (x) =
∫ x

−∞
p(y) dy.

Examples (continuous r.v): (1) Uniform distribution on [a, b]:

p(x) = χ[a,b](x)/(b− a);

(2) unit or standard Gaussian (normal) distribution:

p(x) = (2π)−1/2e−x
2/2;

(3) exponential distribution (λ > 0):

p(x) = λe−λxχ(x≥0);

Examples (discrete r.v): (1) two point r.v, taking x1 with prob. p, x2 with prob. 1 − p,
distribution is:

FX =


0 x < x1
p x ∈ [x1, x2)
1 x ≥ x2,

(2) Poisson distribution with (λ > 0):

pn = P (X = n) = λn exp{−λ}/n!, n = 0, 1, 2, · · · .

Mean of a r.v. is:

µ = E(X) =
N∑
j=1

xjpj,

the discrete case and:

µ = E(X) =
∫
R1
xp(x) dx,

the continuous case.

Variance is: σ2 = V ar(X) = E((X − µ)2).
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2 Random Number Generators

On digital computers, psuedo-random numbers are used as approximations of random

numbers. A common algorithm is the linear recursive scheme:

Xn+1 = aXn (mod c ), (2.2)

a and c positive relatively prime integers, with initial value ”seed” X0. The numbers:

Un = Xn/c,

will be approximately uniformly distributed over [0, 1]. c is usually a large integer in powers

of 2, a is a large integer relative prime to c.

Matlab command ”rand(m,n)” generates m × n matrices with psuedo random entries

uniformly distributed on (0, 1) ( c = 21492), using current state. S = rand(’state’) is a

35-element vector containing the current state of the uniform generator. rand(’state’,0)

resets the generator to its initial state. rand(’state’,J), for integer J, resets the generator

to its J-th state. Similarly, ”randn(m,n)” generates m × n matrices with psuedo random

entries standard-normally distributed, or unit Gaussian.

Example: a way to visualize the generated random numbers is:

t = (0 : 0.01 : 1)′;

rand(′state′, 0);

y1 = rand(size(t));

randn(′state′, 0);

y2 = randn(size(t));

plot(t, y1,′ b′, t, y2,′ g′)

Two-point r.v. can be generated from uniformly distributed r.v. U ∈ [0, 1] as:

X =

{
x1 U ∈ [0, p]
x2 U ∈ (p, 1]

A continuous r.v with distribution function FX , can be generated from U asX = F−1X (U)

if F−1X exists, or more generally:

X = inf{x : U ≤ FX(x)}.
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This is called inverse transform method. It applies to exponential distribution, to give:

X = − ln(1− U)/λ, U ∈ (0, 1).

The Box-Muller method generates Gaussian from two independent Ui ∈ [0, 1], i = 1, 2

by a nonlinear mapping:

N1 =
√
−2 lnU1 cos(2πU2),

N2 =
√
−2 lnU1 sin(2πU2), (2.3)

where N1, N2 are independent unit Gaussian.

A related method is Polar-Marsaglia method, mapping two independent uniformly dis-

tributed V1,V2 on (−1, 1) first to unit circle:

(V1/
√
W,V2/

√
W ), W = V 2

1 + V 2
2 ,

then follow Box-Muller as:

N1 = V1
√
−2 ln(W )/W,

N2 = V2
√
−2 ln(W )/W. (2.4)

3 Moment Inequalities

Some useful inequalities involving moments are:

• Markov inequality:

P ({ω : X(ω) ≥ a}) ≤ 1

a
E(X), if X(ω) ≥ 0;

and Chebyshev inequality:

P ({ω : |X(ω)|2 ≥ a}) ≤ 1

a
E(X2),

for any a > 0.

• Jensen’s inequality:

g(E(X)) ≤ E(g(X)), g convex.

It follows that for any 0 < r < s:
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(E(|X − a|r))1/r ≤ (E(|X − a|s))1/s,

Lyapunov inequality.

• Hölder inequality:

E(|X + Y |r)1/r ≤ E(|X|r)1/r + E(|Y |r)1/r, r ≥ 1,

E(|X · Y |) ≤ (E(|X|p))1/p(E(|Y |q))1/q, p−1 + q−1 = 1.

4 Joint Distribution

For n r.v’s X1, X2, · · · , Xn, Joint Distribution Function is:

FX1,···,Xn(x1, · · · , xn) = P ({ω ∈ Ω : Xi(ω) ≤ xi, i = 1, 2, · · · , n}).

• n = 2,

FX1,X2 → 0, xi → −∞,

FX1,X2 → 1, x1, x2 → +∞,

FX1,X2 is nondecreasing and right continuous in x1 and x2.

Marginal Distribution FX1 :

FX1(x1) = lim
x2→∞

FX1,X2(x1, x2).

Continuous r.v:

FX1,X2(x1, x2) =
∫ x1

−∞

∫ x2

−∞
p(y1, y2)dy1dy2,

p ≥ 0 density.

Joint Gaussian with mean µ = (µ1, µ2) and covariance C−1 = (E(Xi − µi)(Xj − µj)) > 0:

p(x1, x2) =

√
det(C)

2π
exp{

−1

2

2∑
i,j=1

ci,j(xi − µi)(xj − µj)

}, (4.5)

orthogonal transformation of Gaussian r.v. is Gaussian.

• Independence:

FX1X2(x1, x2) = FX1(x1)FX2(x2),

p(x1, x2) = p1(x1)p2(x2).
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5 Convergence and Limit Theorems

Sequence of r.v. X1, X2, · · · , Xn:

• convergence with prob 1 (cp1):

P
(
{ω ∈ Ω : lim

n→∞
|Xn(ω)−X(ω)| = 0}

)
= 1; (5.6)

• mean-square convergence (msc): (E(X2
i ) ≤ C)

lim
n→∞

E(|Xn −X|2) = 0; (5.7)

• convergence in prob (cp):

lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}) = 0, ∀ ε; (5.8)

• convergence in law (cl):

lim
n→∞

FXn(x) = FX(x), (5.9)

at all continuous points of FX ;

• weak convergence:

lim
n→∞

∫
R1
f(x)dFX(x) =

∫
R1
f(x)dFX(x), (5.10)

for any f ∈ C0(R
1).

cp1 (msc) =⇒ cp =⇒ cl.

If |Xi| ≤ |Y |, wp1, E(|Y |2) <∞, DCT:

cp1 =⇒ msc =⇒ cp.

Example 1: i.i.d. r.v Xi’s, with µ = E(Xi), σ
2 = V ar(Xi),

Sn

n
=

∑n
i=1Xi

n
→ µ,

wp1 and msc (Strong Law of Large Numbers), cp (Weak Law of Large Numbers).

Sn − nµ
σ
√
n
→ N(0, 1),

in law, N(0, 1) unit Gaussian, Central Limit Theorem.

Example 2: Let Ω = [0, 1], P ([a, b]) = |b − a|, [a, b] ⊂ [0, 1]. Let An = {ω : ω ∈
[0, 1/n]}, Xn =

√
nχAn , then Xn → 0 in probability, a.s, but not in mean-square.
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6 Project I (due April 12 before lecture, 2021)

You can use any programming language, you don’t need to tex your report. Please send

the digital version to zhongjianwang25@gmail.com. Title will be P1-(Your Name on UID).

I1. Generate N = 104 uniformly distributed pseudo random numbers on (0, 1) on

Matlab (or in other environment). Partition the interval into subintervals Ij of equal

length 0.05. Count the number of random numbers in Ij as Nj. Plot relative frequencies

Nj/N divided by subinterval length, so called histogram. Does the histogram look like

density of U(0, 1) ? Compute sample average:

µN =
1

N

N∑
j=1

xj,

and sample variance:

σN =
1

N − 1

N∑
j=1

(xj − µN)2.

Compare them to 1/2 and 1/12, exact mean and variance of U(0, 1).

I2. Repeat I1 for unit Gaussian random numbers: partition [−2.5, 2.5] into 100 subintervals

of equal length, with fixed intervals (−∞,−2.5) and (2, 5,∞) for other values.

I3. Show that the two random variables N1, N2 generated by Box-Muller method are

Gaussian with zero mean and identity covariance when U1, U2 are independent U(0, 1)

uniformly distributed.

I4. (1) Let Z = (N1, N2), S an invertible 2 x 2 matrix, µ ∈ R2, show that X = STZ + µ

is jointly Gaussian with mean µ, and covariance matrix STS.

(2) Write a program to generate a pair of Gaussian pseudo random numbers (X1, X2) with

zero mean and covariance E(X2
1 ) = 1, E(X2

2 ) = 1/3, E(X1X2) = 1/2. Generate 1000 pairs

of such numbers, evaluate their sample averages and sample covariances.
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