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Conditional Expectation for Discrete r.v.

Recall that if X and Y are jointly discrete random variables, then
the conditional probability mass function of X , given that Y = y ,
is defined, for all y such that P{Y = y} > 0, by

pX |Y (x | y) = P{X = x | Y = y} =
p(x , y)

pY (y)

Base on this, we know pX |Y {· | Y = y} is a distribution function.
Now how to define E [X | Y = y ]? The conditional expectation of
X given that Y = y , for all values of y such that pY (y) > 0, by

E [X | Y = y ] =
∑
x

xP{X = x | Y = y}

=
∑
x

xpX |Y (x | y)
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Conditional Expectation for Continuous r.v.

Similarly, let us recall that if X and Y are jointly continuous with a
joint probability density function f (x , y), then the conditional
probability density of X , given that Y = y , is defined, for all values
of y such that fY (y) > 0, by

fX |Y (x | y) =
f (x , y)

fY (y)

Again, we know pX |Y {· | Y = y} is a distribution function. Now
how to define E [X | Y = y ]? The conditional expectation of X ,
given that Y = y , by

E [X | Y = y ] =

∫ ∞
−∞

xfX |Y (x | y)dx

provided that fY (y) > 0
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Example

Suppose that the joint density of X and Y is given by

f (x , y) =
e−x/ye−y

y
0 < x <∞, 0 < y <∞

Compute E [X | Y = y ].



Where are we?

Formula for computation

Compute Expectation by Conditioning

Conditional Expectation is the best preditor



Formula

E [X ] = E [E [X | Y ]]

What does it mean?

If Y is a discrete random variable,

E [X ] =
∑
y

E [X | Y = y ]P{Y = y}

whereas if Y is continuous random variable,

E [X ] =

∫ ∞
−∞

E [X | Y = y ]fY (y)dy
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Example: Miner Travel

A miner is trapped in a mine containing 3 doors.

I The first door leads to a tunnel that will take him to safety after
3 hours of travel.

I The second door leads to a tunnel that will return him to the
mine after 5 hours of travel.

I The third door leads to a tunnel that will return him to the mine
after 7 hours.

If we assume that the miner is at all times equally likely to choose
any one of the doors, what is the expected length of time until he
reaches safety?



Example

Suppose that X and Y are independent continuous random
variables having densities fX and fY , respectively. Compute
P{X < Y }



Conditional Variance

Var(X ) = E [Var(X | Y )] + Var(E [X | Y ])

Proof can be found on Ross Book and is left as homework.
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Derivation

I Assume a random variable X is observed.

I We need to predict the value of a second random variable Y .

I Let g(X ) denote the predictor for Y .

I We would like to show g(X ) = E [Y | X ], is the best possible
predictor.

How to determine a predictor is good (or best)?
One possible criterion for closeness is to choose g so as to
minimize E

[
(Y − g(X ))2

]
.
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Proof

In detail, we would like to prove,

E
[
(Y − g(X ))2

]
≥ E

[
(Y − E [Y | X ])2

]
.

E
[
(Y − g(X ))2 | X

]
=E

[
(Y−E [Y | X ] + E [Y | X ]− g(X ))2 | X

]
=E

[
(Y − E [Y | X ])2 | X

]
+ E

[
(E [Y | X ]− g(X ))2 | X

]
+ 2E [(Y − E [Y | X ])(E [Y | X ]− g(X )) | X ]

However, given X ,E [Y | X ]− g(X ), being a function of X , can be
treated as a constant. Thus,

E [(Y − E [Y | X ])(E [Y | X ]− g(X )) | X ]
= (E [Y | X ]− g(X ))E [Y − E [Y | X ] | X ]
= (E [Y | X ]− g(X ))(E [Y | X ]− E [Y | X ])
= 0
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