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Formula

Let X1 and X2 be jointly continuous random variables with joint
probability density function fX1,X2 . Suppose that Y1 = g1(X1,X2)
and Y2 = g2(X1,X2)

Assume that the functions g1 and g2 satisfy

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be
uniquely solved for x1 and x2 in terms of y1 and y2, with
solutions given by, say, x1 = h1(y1, y2), x2 = h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all
points (x1, x2) and are such that the 2× 2 determinant, i.e.

J(x1, x2) =

∣∣∣∣∣∂g1∂x1
∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ =
∂g1
∂x1

∂g2
∂x2
− ∂g2
∂x1

∂g1
∂x2
6= 0

at all points (x1, x2).

Then Y1 and Y2 are jointly continuous with joint density function
given by

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J(x1, x2)|−1

where x1 = h1(y1, y2), x2 = h2(y1, y2).
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Formula for more variables

Let X = (X1, · · · ,Xn) be jointly continuous random variables with
joint probability density function fX . Suppose that Y = g(X )

Assume that the functions g satisfy

1. The equations y = g(x) can be uniquely solved for x in terms of
y , with solutions given by, say, x = h(y).

2. The functions g have continuous partial derivatives at all points
x and are such that the n × n determinant, i.e.

J(x) 6= 0

at all points x .

Then Y are jointly continuous with joint density function given by

fY (y) = fX (x)|J(x)|−1

where x = h(y).
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Example: 2D transform

Let X1 and X2 be jointly continuous random variables with
probability density function fX1,X2 . Let Y1 = X1 + X2,
Y2 = X1 − X2. Find the joint density function of Y1 and Y2 in
terms of fX1,X2 .



Example: general linear transform

Let X = (X1, · · · ,Xn) be jointly continuous random variables with
joint probability density function fX . Suppose that Y = AX where
A is a n× n matrix with |A| 6= 0. Find the joint density function of
Y in terms of fX .



Example: 2D normal r.v. in the polar coodinate

Let (X ,Y ) denote a random point in the plane, and assume that
the rectangular coordinates X and Y are independent standard
normal random variables. What is the joint distrubtion of (r , θ),
the polar coordinate representation of (x , y)?

To be more specific, r =
√

x2 + y2, θ = tan−1 y/x .
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Summation of i.i.d. exp varaibles

Let X1,X2, · · · ,Xn be independent and identically distributed
exponential random variables with rate λ. Let

Yi = X1 + · · ·+ Xi i = 1, · · · , n

1. Find the joint density function of Y1, · · · ,Yn.

2. Use the first result to find the density of Yn.
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