Lecture 24: Strong law of large numbers Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago Statement of Theorem

Proof

Examples

Statement of Theorem

Proof

Examples

Comparison with weak law of large numbers

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables, each having a finite mean $\mu = E[X_i]$. Then,

weak for any $\epsilon > 0$,

$$\mathbb{P}\left\{\left|\frac{X_1+\dots+X_n}{n}-\mu\right|\geq\varepsilon\right\}\to0\quad\text{ as }\quad n\to\infty$$

Comparison with weak law of large numbers

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables, each having a finite mean $\mu = E[X_i]$. Then,

weak for any $\epsilon > 0$,

$$\mathbb{P}\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right\} \to 0 \quad \text{as} \quad n \to \infty$$

strong with probability 1,

$$rac{X_1+X_2+\dots+X_n}{n}-\mu o 0$$
 as $n o\infty$

Comparison with weak law of large numbers

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables, each having a finite mean $\mu = E[X_i]$. Then,

weak for any $\epsilon > 0$,

$$\mathbb{P}\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right\} \to 0 \quad \text{ as } \quad n \to \infty$$

strong with probability 1,

$$rac{X_1+X_2+\dots+X_n}{n}-\mu o 0$$
 as $n o\infty$

The strong implies the weak.

A random variable sequence $\{X_n\}$ converges to $X \in R$

A random variable sequence $\{X_n\}$ converges to $X \in R$

almost surely if

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1$$

e.g. Strong law of large numbers

A random variable sequence $\{X_n\}$ converges to $X \in R$

almost surely if

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1$$

e.g. Strong law of large numbers

in probabilties if

$$\lim_{n\to\infty}\mathbb{P}\left(|X_n-X|>\varepsilon\right)=0\quad\text{ for any }\epsilon>0$$

e.g. Weak law of large numbers

A random variable sequence $\{X_n\}$ converges to $X \in R$

almost surely if

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1$$

e.g. Strong law of large numbers

in probabilties if

$$\lim_{n\to\infty}\mathbb{P}\left(|X_n-X|>\varepsilon\right)=0\quad\text{ for any }\epsilon>0$$

e.g. Weak law of large numbers

in distribution if

 $\lim_{n\to\infty}\mathbb{P}\left(X_n\in A\right)=\mathbb{P}(X\in A)\quad\text{ for cointinuous set }A\text{ in }R$

e.g. Central limit theorem

Statement of Theorem

Proof

Examples

Proof

Although the theorem can be proven without this assumption, we will suppose that $\mathbb{E}[X_i^4] = K < \infty$. Let $S_n = \sum_{i=1}^n X_i$ and consider

$$\mathbb{E}\left[S_{n}^{4}\right] = \mathbb{E}\left[\left(X_{1}+\dots+X_{n}\right)\left(X_{1}+\dots+X_{n}\right)\right.\\ \times \left(X_{1}+\dots+X_{n}\right)\left(X_{1}+\dots+X_{n}\right)\right]$$

Proof

Although the theorem can be proven without this assumption, we will suppose that $\mathbb{E}[X_i^4] = K < \infty$. Let $S_n = \sum_{i=1}^n X_i$ and consider

$$\mathbb{E}\left[S_{n}^{4}\right] = \mathbb{E}\left[\left(X_{1}+\cdots+X_{n}\right)\left(X_{1}+\cdots+X_{n}\right)\right.\\ \left.\times\left(X_{1}+\cdots+X_{n}\right)\left(X_{1}+\cdots+X_{n}\right)\right]$$

$$\mathbb{E}\left[S_{n}^{4}\right] = n\mathbb{E}\left[X_{i}^{4}\right] + 6\binom{n}{2}\mathbb{E}\left[X_{i}^{2}X_{j}^{2}\right]$$
$$= n\mathcal{K} + 3n(n-1)\mathbb{E}\left[X_{i}^{2}\right]\mathbb{E}\left[X_{j}^{2}\right]$$

Proof conti

We know $0 \leq \operatorname{Var} \left(X_i^2\right) \mathbb{E} \left[X_i^4\right] - \left(\mathbb{E} \left[X_i^2\right]\right)^2$ So, $\left(\mathbb{E} \left[X_i^2\right]\right)^2 \leq \mathbb{E} \left[X_i^4\right] = K.$ Now,

 $\mathbb{E}\left[S_{n}^{4}
ight]\leq$

Proof conti

We know $0 \leq \operatorname{Var}(X_i^2) \mathbb{E}\left[X_i^4\right] - \left(\mathbb{E}\left[X_i^2\right]\right)^2$ So. $\left(\mathbb{E}\left[X_{i}^{2}\right]\right)^{2} \leq \mathbb{E}\left[X_{i}^{4}\right] = K.$ Now, $\mathbb{E}\left[S_n^4\right] \leq nK + 3n(n-1)K$ Hence $\mathbb{E}\left[\sum_{n=1}^{\infty}\frac{S_{n}^{4}}{n^{4}}\right] = \sum_{n=1}^{\infty}\mathbb{E}\left[\frac{S_{n}^{4}}{n^{4}}\right] < \infty$

Proof conti

We know $0 \leq \operatorname{Var} \left(X_i^2\right) \mathbb{E} \left[X_i^4\right] - \left(\mathbb{E} \left[X_i^2\right]\right)^2$ So, $\left(\mathbb{E} \left[X_i^2\right]\right)^2 \leq \mathbb{E} \left[X_i^4\right] = K.$ Now, $\mathbb{E} \left[S_n^4\right] \leq nK + 3n(n-1)K$

Hence

$$\mathbb{E}\left[\sum_{n=1}^{\infty} \frac{S_n^4}{n^4}\right] = \sum_{n=1}^{\infty} \mathbb{E}\left[\frac{S_n^4}{n^4}\right] < \infty$$

What if with some positive probability,

$$\sum_{n=1}^{\infty} S_n^4/n^4 \quad \text{diverges?}$$

Statement of Theorem

Proof

Examples

Alternative (classic) definition of probability of an event

We suppose that an experiment, whose sample space is S, is repeatedly performed under exactly the same conditions. For each event E of the sample space S, we define n(E) to be the number of times in the first n repetitions of the experiment that the event E occurs. Then P(E), the probability of the event E, is defined as

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

Alternative (classic) definition of probability of an event

We suppose that an experiment, whose sample space is S, is repeatedly performed under exactly the same conditions. For each event E of the sample space S, we define n(E) to be the number of times in the first n repetitions of the experiment that the event E occurs. Then P(E), the probability of the event E, is defined as

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

Now let

$$X_i = \begin{cases} 1 & \text{if } E \text{ occurs on the } i \text{ th trial} \\ 0 & \text{if } E \text{ does not occur on the } i \text{ th trial} \end{cases}$$

we have, by the strong law of large numbers, that with probability 1, (5)

$$\frac{n(E)}{n} = \frac{X_1 + \dots + X_n}{n} \to E[X] = \mathbb{P}(E)$$

Bernstein Polynomials

Let f(x) be a continuous function defined for $0 \le x \le 1$. Consider the functions

$$B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \left(\begin{array}{c}n\\k\end{array}\right) x^k (1-x)^{n-k}$$

and prove that

$$\lim_{n\to\infty}B_n(x)=f(x)$$

Bernstein Polynomials

Let f(x) be a continuous function defined for $0 \le x \le 1$. Consider the functions

$$B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \left(\begin{array}{c}n\\k\end{array}\right) x^k (1-x)^{n-k}$$

and prove that

$$\lim_{n\to\infty}B_n(x)=f(x)$$

Hint: Let X_1, X_2, \ldots be independent Bernoulli random variables with mean x. Show that

$$B_n(x) = E\left[f\left(\frac{X_1 + \dots + X_n}{n}\right)\right]$$