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Comparison with weak law of large numbers

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having a finite mean
µ = E [Xi ] . Then,

weak for any ε > 0,

P
{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε}→ 0 as n→∞

strong with probability 1 ,

X1 + X2 + · · ·+ Xn

n
− µ→ 0 as n→∞

The strong implies the weak.
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Convergence of random variables

A random variable sequence {Xn} converges to X ∈ R

I almost surely if

P
(

lim
n→∞

Xn = X
)

= 1

e.g. Strong law of large numbers

I in probabilties if

lim
n→∞

P (|Xn − X | > ε) = 0 for any ε > 0

e.g. Weak law of large numbers

I in distribution if

lim
n→∞

P (Xn ∈ A) = P(X ∈ A) for cointinuous set A in R

e.g. Central limit theorem
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Proof

Although the theorem can be proven without this assumption, we
will suppose that E

[
X 4
i

]
= K <∞.

Let Sn =
∑n

i=1 Xi and consider

E
[
S4
n

]
=E [(X1 + · · ·+ Xn) (X1 + · · ·+ Xn)

× (X1 + · · ·+ Xn) (X1 + · · ·+ Xn)]

E
[
S4
n

]
= nE

[
X 4
i

]
+ 6

(
n
2

)
E
[
X 2
i X

2
j

]
= nK + 3n(n − 1)E

[
X 2
i

]
E
[
X 2
j

]
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Proof conti

We know
0 ≤ Var

(
X 2
i

)
E
[
X 4
i

]
−
(
E
[
X 2
i

])2
So, (

E
[
X 2
i

])2 ≤ E
[
X 4
i

]
= K .

Now,
E
[
S4
n

]
≤

nK + 3n(n − 1)K

Hence

E

[ ∞∑
n=1

S4
n

n4

]
=
∞∑
n=1

E
[
S4
n

n4

]
<∞

What if with some positive probability,

∞∑
n=1

S4
n/n

4 diverges?
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Alternative (classic) definition of probability of an event

We suppose that an experiment, whose sample space is S , is
repeatedly performed under exactly the same conditions. For each
event E of the sample space S , we define n(E ) to be the number
of times in the first n repetitions of the experiment that the event
E occurs. Then P(E ), the probability of the event E , is defined as

P(E ) = lim
n→∞

n(E )

n

Now let

Xi =

{
1 if E occurs on the i th trial
0 if E does not occur on the i th trial

we have, by the strong law of large numbers, that with probability
1 ,

n(E )

n
=

X1 + · · ·+ Xn

n
→ E [X ] = P(E )
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Bernstein Polynomials

Let f (x) be a continuous function defined for 0 ≤ x ≤ 1. Consider
the functions

Bn(x) =
n∑

k=0

f

(
k

n

)(
n
k

)
xk(1− x)n−k

and prove that
lim
n→∞

Bn(x) = f (x)

Hint: Let X1,X2, . . . be independent Bernoulli random variables
with mean x . Show that

Bn(x) = E

[
f

(
X1 + · · ·+ Xn

n

)]
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