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Revision

Recall the weak law of large numbers,
Let X1,X2, . . . be a sequence of thdependent and ldentically
distributed random vanables, each having finite mean E [Xi ] = µ.
Then, for any ε > 0,

P

{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

}
→ 0 as n → ∞

In some sense means,
∣∣∣X1+···+Xn−nµ

n

∣∣∣→ 0. What about

X1 + · · ·+ Xn − nµ√
n

or in other words, how fast does it converge?



Central limit theorem

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having mean µ and variance σ2.
Then the distribution of

X1 + · · ·+ Xn − nµ

σ
√
n

tends to the standard normal as n → ∞. That is, for
−∞ < a < ∞,

P
{
X1 + · · ·+ Xn − nµ

σ
√
n

≤ a

}
→ 1√

2π

∫ a

−∞
e−x2/2dx as n → ∞
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Proof:

We first assume mean µ = 0, variance σ2 = 1. (Why we can do
this?)
Let M(t) be the moment generating function of Xi . Then the
moment generating function of

∑n
i=1 Xi/

√
n is given by[

M
(

t√
n

)]n
.

Let L(t) = logM(t), then

log

([
M

(
t√
n

))]n
= nL(t/

√
n)



Proof conti

What is the limit of nL(t/
√
n) when n → ∞?

lim
n→∞

L(t/
√
n)

n−1
= lim

n→∞

−L′(t/
√
n)n−3/2t

−2n−2
(by L’Hôpital’s rule)

= lim
n→∞

[
L′(t/

√
n)t

2n−1/2

]
= lim

n→∞

[
−L′′(t/

√
n)n−3/2t2

−2n−3/2

]
(by L’Hôpital’s rule )

= lim
n→∞

[
L′′
(

t√
n

)
t2

2

]
=

t2

2
(as L′′(0) =

M(0)M ′′(0)− [M ′(0)]2

[M(0)]2
= 1)



Proof conti

So as n → ∞, [M(t/
√
n)]n → et

2/2.

What distribution has generating function et
2/2?

Theorem
Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having mean µ and variance σ2.
Then the distribution of

X1 + · · ·+ Xn − nµ

σ
√
n

tends to the standard normal as n → ∞.
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Notes when applying CLT

▶ When can CLT be applied?
CLT only applies when N → ∞. Empirically, only when N ≥ 30,
you can have confidence to apply it. If N < 10, unless otherwise
noted, we should use Markov inequalities.

▶ Z score
When the random variable converges to normal distribution, in
some case we need to know the exact value of integral
ϕ(a) = 1√

2π

∫ a
−∞ e−x2/2.

a -2.58 -1.96 -1.645 0 1.645 1.96 2.58

ϕ(a) 0.005 0.025 0.05 0.5 0.95 0.975 0.995



Example

Let Xi , i = 1, . . . , 100 be i.i.d. uniform random variables on (0, 1).
Approximate

P

(
100∑
i=1

Xi > 57.5

)
.

Notice that E[Xi ] =
1
2 and Var(Xi ) =

1
12 . This means

P

(
100∑
i=1

Xi > 57.5

)
= P

X1 + · · ·+ X100 − 50√
100× 1

12

>
7.5√

100× 1
12


= P

X1 + · · ·+ X100 − 50√
100× 1

12

> 2.598


≈ 1− Φ(2.58) ≈ 0.005.
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Comparison with weak law of large numbers

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having a finite mean
µ = E [Xi ] . Then,

weak for any ϵ > 0,

P
{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

}
→ 0 as n → ∞

strong with probability 1 ,

X1 + X2 + · · ·+ Xn

n
− µ → 0 as n → ∞

The strong implies the weak.



Convergence of random variables

A random variable sequence {Xn} converges to X ∈ R

▶ almost surely if

P
(
lim
n→∞

Xn = X
)
= 1

e.g. Strong law of large numbers

▶ in probabilties if

lim
n→∞

P (|Xn − X | > ε) = 0 for any ϵ > 0

e.g. Weak law of large numbers

▶ in distribution if

lim
n→∞

P (Xn ∈ A) = P(X ∈ A) for cointinuous set A in R

e.g. Central limit theorem
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Proof

Although the theorem can be proven without this assumption, we
will suppose that E

[
X 4
i

]
= K < ∞.

Let Sn =
∑n

i=1 Xi and consider

E
[
S4
n

]
=E [(X1 + · · ·+ Xn) (X1 + · · ·+ Xn)

× (X1 + · · ·+ Xn) (X1 + · · ·+ Xn)]

E
[
S4
n

]
= nE

[
X 4
i

]
+ 6

(
n
2

)
E
[
X 2
i X

2
j

]
= nK + 3n(n − 1)E

[
X 2
i

]
E
[
X 2
j

]



Proof conti

We know
0 ≤ Var

(
X 2
i

)
E
[
X 4
i

]
−
(
E
[
X 2
i

])2
So, (

E
[
X 2
i

])2 ≤ E
[
X 4
i

]
= K .

Now,
E
[
S4
n

]
≤ nK + 3n(n − 1)K

Hence

E

[ ∞∑
n=1

S4
n

n4

]
=

∞∑
n=1

E
[
S4
n

n4

]
< ∞

What if with some positive probability,

∞∑
n=1

S4
n/n

4 diverges?
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Alternative (classic) definition of probability of an event

We suppose that an experiment, whose sample space is S , is
repeatedly performed under exactly the same conditions. For each
event E of the sample space S , we define n(E ) to be the number
of times in the first n repetitions of the experiment that the event
E occurs. Then P(E ), the probability of the event E , is defined as

P(E ) = lim
n→∞

n(E )

n

Now let

Xi =

{
1 if E occurs on the i th trial
0 if E does not occur on the i th trial

we have, by the strong law of large numbers, that with probability
1 ,

n(E )

n
=

X1 + · · ·+ Xn

n
→ E [X ] = P(E )



Bernstein Polynomials

Let f (x) be a continuous function defined for 0 ≤ x ≤ 1. Consider
the functions

Bn(x) =
n∑

k=0

f

(
k

n

)(
n
k

)
xk(1− x)n−k

and prove that
lim
n→∞

Bn(x) = f (x)

Hint: Let X1,X2, . . . be independent Bernoulli random variables
with mean x . Show that

Bn(x) = E

[
f

(
X1 + · · ·+ Xn

n

)]
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