Lecture 23: Central Limit Theorem Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago Theorem Statement

Moment Generating Function: Part II

Proof of the theorem

Examples

Theorem Statement

Moment Generating Function: Part II

Proof of the theorem

Examples

Revision

Recall the weak law of large numbers,

Let X_1, X_2, \ldots be a sequence of thdependent and Identically distributed random vanables, each having finite mean $E[X_i] = \mu$. Then, for any $\varepsilon > 0$,

$$P\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon
ight\} o 0 \quad \text{as} \quad n o \infty$$

Revision

Recall the weak law of large numbers,

Let X_1, X_2, \ldots be a sequence of thdependent and Identically distributed random vanables, each having finite mean $E[X_i] = \mu$. Then, for any $\varepsilon > 0$,

$$P\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right\} \to 0 \quad \text{as} \quad n \to \infty$$

In some sense means, $\left|\frac{X_1+\dots+X_n-n\mu}{n}\right| \to 0$. What about

$$\frac{X_1+\cdots+X_n-n\mu}{\sqrt{n}}$$

or in other words, how fast does it converge?

Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables, each having mean μ and variance σ^2 . Then the distribution of

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to the standard normal as $n \to \infty$. That is, for $-\infty < a < \infty$,

$$\mathbb{P}\left\{\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le a\right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx \text{ as } n \to \infty$$

Theorem Statement

Moment Generating Function: Part II

Proof of the theorem

Examples

Definition:

$$M(t) = E\left[e^{tX}\right]$$
$$= \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with mass function } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with density } f(x) \end{cases}$$

When calculating moments

$$M^n(0) = E[X^n] \quad n \ge 1$$

Moment Generating Function of sum of independent random variables

If X and Y are independent and have moment generating functions $M_X(t)$ and $M_Y(t)$, respectively. Then $M_{X+Y}(t)$, is given by

$$egin{aligned} \mathcal{M}_{X+Y}(t) &= E\left[e^{t(X+Y)}
ight]\ &= E\left[e^{tX}e^{tY}
ight]\ &= E\left[e^{tX}
ight]E\left[e^{tY}
ight]\ &= \mathcal{M}_{X}(t)\mathcal{M}_{Y}(t). \end{aligned}$$

Moment Generating Function of sum of independent random variables

If X and Y are independent and have moment generating functions $M_X(t)$ and $M_Y(t)$, respectively. Then $M_{X+Y}(t)$, is given by

$$egin{aligned} \mathcal{M}_{X+Y}(t) &= \mathcal{E}\left[e^{t(X+Y)}
ight] \ &= \mathcal{E}\left[e^{tX}e^{tY}
ight] \ &= \mathcal{E}\left[e^{tX}
ight] \mathcal{E}\left[e^{tY}
ight] \ &= \mathcal{M}_{X}(t)\mathcal{M}_{Y}(t). \end{aligned}$$

If $\{X_i\}_{i=1}^n$ are identical independent random variables from the same distribution with moment generating function M_X , what is $M_{\sum_{i=1}^n X_i}$?

Lemma: moment generating function decides the distribution

- Let Z₁, Z₂,... be a sequence of random variables having distribution functions F_{Z_n} and moment generating functions M_{Z_n}, n ≥ 1.
- Let Z be a random variable having distribution function F_Z and moment generating function M_Z .
- If $M_{Z_n}(t) \to M_Z(t)$ for all t, then $F_{Z_n}(t) \to F_Z(t)$ for all t at which $F_Z(t)$ is continuous.

Theorem Statement

Moment Generating Function: Part II

Proof of the theorem

Examples

We first assume mean $\mu=$ 0, variance $\sigma^2=$ 1. (Why we can do this?)

Proof:

We first assume mean $\mu = 0$, variance $\sigma^2 = 1$. (Why we can do this?)

Let M(t) be the moment generating function of X_i . Then the moment generating function of $\sum_{i=1}^{n} X_i / \sqrt{n}$ is given by

Proof:

We first assume mean $\mu = 0$, variance $\sigma^2 = 1$. (Why we can do this?)

Let M(t) be the moment generating function of X_i . Then the moment generating function of $\sum_{i=1}^{n} X_i / \sqrt{n}$ is given by $\left[M\left(\frac{t}{\sqrt{n}}\right)\right]^n$.

Let
$$L(t) = \log M(t)$$
, then

$$\log\left(\left[M\left(\frac{t}{\sqrt{n}}\right)\right)\right]^n = tnL(t/\sqrt{n})$$

Proof:

We first assume mean $\mu = 0$, variance $\sigma^2 = 1$. (Why we can do this?)

Let M(t) be the moment generating function of X_i . Then the moment generating function of $\sum_{i=1}^{n} X_i / \sqrt{n}$ is given by $\left[M\left(\frac{t}{\sqrt{n}}\right)\right]^n$.

Let
$$L(t) = \log M(t)$$
, then

$$\log\left(\left[M\left(\frac{t}{\sqrt{n}}\right)\right)\right]^n = tnL(t/\sqrt{n})$$

What is the limit of $nL(t/\sqrt{n})$ when $n \to \infty$?

$$\lim_{n \to \infty} \frac{L(t/\sqrt{n})}{n^{-1}} = \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}} \text{ (by L'Hôpital's rule)}$$
$$= \lim_{n \to \infty} \left[\frac{L'(t/\sqrt{n})t}{2n^{-1/2}} \right]$$
$$= \lim_{n \to \infty} \left[\frac{-L''(t/\sqrt{n})n^{-3/2}t^2}{-2n^{-3/2}} \right] \text{ (by L'Hôpital's rule)}$$
$$= \lim_{n \to \infty} \left[L''\left(\frac{t}{\sqrt{n}}\right)\frac{t^2}{2} \right]$$
$$= \frac{t^2}{2} \text{ (as } L''(0) = \frac{M(0)M''(0) - [M'(0)]^2}{[M(0)]^2} = 1)$$

```
So as n 	o \infty, [M(t/\sqrt{n})]^n 	o
```

So as
$$n \to \infty$$
, $[M(t/\sqrt{n})]^n \to e^{t^2/2}$.

What distribution has generating function $e^{t^2/2}$?

So as
$$n \to \infty$$
, $[M(t/\sqrt{n})]^n \to e^{t^2/2}$.

What distribution has generating function $e^{t^2/2}$?

Theorem

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables, each having mean μ and variance σ^2 . Then the distribution of

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to the standard normal as $n \to \infty$.

Theorem Statement

Moment Generating Function: Part II

Proof of the theorem

Examples

▶ When can CLT be applied?

► When can CLT be applied?

CLT only applies when $N \rightarrow \infty$. Empirically, only when $N \ge 30$, you can have confidence to apply it. If N < 10, unless otherwise noted, we should use Markov inequalities.

► When can CLT be applied?

CLT only applies when $N \rightarrow \infty$. Empirically, only when $N \ge 30$, you can have confidence to apply it. If N < 10, unless otherwise noted, we should use Markov inequalities.

Z score

When the random variable converges to normal distribution, in some case we need to know the exact value of integral $\phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2}$.

► When can CLT be applied?

CLT only applies when $N \rightarrow \infty$. Empirically, only when $N \ge 30$, you can have confidence to apply it. If N < 10, unless otherwise noted, we should use Markov inequalities.

Z score

When the random variable converges to normal distribution, in some case we need to know the exact value of integral

$$\phi(a) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2}$$

а	-2.58	-1.96	-1.645	0	1.645	1.96	2.58
$\phi(a)$	0.005	0.025	0.05	0.5	0.95	0.975	0.995

Bound for sum of rolling dice

Let $X_i, i = 1, ..., 10$, be independent random variables, each uniformly distributed over (0, 1). Calculate an approximation to $P\left\{\sum_{i=1}^{10} X_i > 6\right\}$

Bound for sum of rolling dice

Let X_i , i = 1, ..., 10, be independent random variables, each uniformly distributed over (0, 1). Calculate an approximation to $P\left\{\sum_{i=1}^{10} X_i > 6\right\}$

Solution.

First,

$$E(X_i) = \frac{7}{2}, \quad Var(X_i) = E[X_i^2] - (E[X_i])^2 = \frac{35}{12}$$

Bound for sum of rolling dice

Let X_i , i = 1, ..., 10, be independent random variables, each uniformly distributed over (0, 1). Calculate an approximation to $P\left\{\sum_{i=1}^{10} X_i > 6\right\}$

Solution.

First,

$$E(X_i) = \frac{7}{2}, \quad \text{Var}(X_i) = E[X_i^2] - (E[X_i])^2 = \frac{35}{12}$$

Then

$$P\{29.5 \le X \le 40.5\} = P\left\{\frac{29.5 - 35}{\sqrt{\frac{350}{12}}} \le \frac{X - 35}{\sqrt{\frac{350}{12}}} \le \frac{40.5 - 35}{\sqrt{\frac{350}{12}}}\right\}$$
$$\approx 2\Phi(1.0184) - 1$$
$$\approx .692$$