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Revision

Recall the weak law of large numbers,
Let X1,X2, . . . be a sequence of thdependent and ldentically
distributed random vanables, each having finite mean E [Xi ] = µ.
Then, for any ε > 0,

P

{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε}→ 0 as n→∞

In some sense means,
∣∣∣X1+···+Xn−nµ

n

∣∣∣→ 0. What about

X1 + · · ·+ Xn − nµ√
n

or in other words, how fast does it converge?
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Central limit theorem

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having mean µ and variance σ2.
Then the distribution of

X1 + · · ·+ Xn − nµ

σ
√
n

tends to the standard normal as n→∞. That is, for
−∞ < a <∞,

P
{
X1 + · · ·+ Xn − nµ

σ
√
n

≤ a

}
→ 1√

2π

∫ a

−∞
e−x

2/2dx as n→∞
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Revision

Definition:

M(t) = E
[
etX
]

=

{ ∑
x e

txp(x) if X is discrete with mass function p(x)∫∞
−∞ etx f (x)dx if X is continuous with density f (x)

When calculating moments

Mn(0) = E [X n] n ≥ 1



Moment Generating Function of sum of independent
random variables

If X and Y are independent and have moment generating functions
MX (t) and MY (t), respectively. Then MX+Y (t), is given by

MX+Y (t) = E
[
et(X+Y )

]
= E

[
etX etY

]
= E

[
etX
]
E
[
etY
]

= MX (t)MY (t).

If {Xi}ni=1 are identical independent random variables from the
same distribution with moment generating function MX , what is
M∑n

i=1 Xi
?
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Lemma: moment generating function decides the
distribution

I Let Z1,Z2, . . . be a sequence of random variables having
distribution functions FZn and moment generating functions
MZn , n ≥ 1.

I Let Z be a random variable having distribution function FZ and
moment generating function MZ .

I If MZn(t)→ MZ (t) for all t, then FZn(t)→ FZ (t) for all t at
which FZ (t) is continuous.
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Proof:

We first assume mean µ = 0, variance σ2 = 1. (Why we can do
this?)

Let M(t) be the moment generating function of Xi . Then the
moment generating function of

∑n
i=1 Xi/

√
n is given by[

M
(

t√
n

)]n
.

Let L(t) = logM(t), then

log

([
M

(
t√
n

))]n
= tnL(t/

√
n)
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Proof conti

What is the limit of nL(t/
√
n) when n→∞?

lim
n→∞

L(t/
√
n)

n−1
= lim

n→∞

−L′(t/
√
n)n−3/2t

−2n−2
(by L’Hôpital’s rule)

= lim
n→∞

[
L′(t/

√
n)t

2n−1/2

]
= lim

n→∞

[
−L′′(t/

√
n)n−3/2t2

−2n−3/2

]
(by L’Hôpital’s rule )

= lim
n→∞

[
L′′
(

t√
n

)
t2

2

]
=

t2

2
(as L′′(0) =

M(0)M ′′(0)− [M ′(0)]2

[M(0)]2
= 1)



Proof conti

So as n→∞, [M(t/
√
n)]n →

et
2/2.

What distribution has generating function et
2/2?

Theorem
Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having mean µ and variance σ2.
Then the distribution of

X1 + · · ·+ Xn − nµ

σ
√
n

tends to the standard normal as n→∞.
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Notes when applying CLT

I When can CLT be applied?

CLT only applies when N →∞. Empirically, only when N ≥ 30,
you can have confidence to apply it. If N < 10, unless otherwise
noted, we should use Markov inequalities.

I Z score
When the random variable converges to normal distribution, in
some case we need to know the exact value of integral
φ(a) = 1√

2π

∫ a
−∞ e−x

2/2.

a -2.58 -1.96 -1.645 0 1.645 1.96 2.58

φ(a) 0.005 0.025 0.05 0.5 0.95 0.975 0.995
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Bound for sum of rolling dice

Let Xi , i = 1, . . . , 10, be independent random variables, each
uniformly distributed over (0, 1). Calculate an approximation to

P
{∑10

i=1 Xi > 6
}

Solution.
First,

E (Xi ) =
7

2
, Var (Xi ) = E

[
X 2
i

]
− (E [Xi ])

2 =
35

12

Then

P{29.5 ≤ X ≤ 40.5} = P

29.5− 35√
350
12

≤ X − 35√
350
12

≤ 40.5− 35√
350
12


≈ 2Φ(1.0184)− 1

≈ .692
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