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Recall the weak law of large numbers,
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distributed random vanables, each having finite mean E [Xj] = p.
Then, for any € > 0,
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— 0. What about

In some sense means, M

Xi+ -4+ Xo— np
vn

or in other words, how fast does it converge?




Central limit theorem

Let X1, X»,... be a sequence of independent and identically
distributed random variables, each having mean y and variance o2.
Then the distribution of

X1+ 4+ Xp—np
ay/n

tends to the standard normal as n — oco. That is, for
—00 < a < 00,

— a
IP’{X1+ X nu<a}—>l/ e *2dx as n — oo
O'ﬁ V2T J o
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Moment Generating Function: Part Il



Revision

Definition:

M(t) = E [etx}

> e®p(x) if X is discrete with mass function p(x)
T [T e™f(x)dx if X is continuous with density f(x)

When calculating moments

MP(0) = E[X"] n>1



Moment Generating Function of sum of independent
random variables

If X and Y are independent and have moment generating functions
Mx(t) and My (t), respectively. Then Mx_y(t), is given by

Mxy(t) = E [et(X+Y):|
—E [etxetY]
_ e[ €[]

= Mx(t)/\/ly(t).



Moment Generating Function of sum of independent
random variables

If X and Y are independent and have moment generating functions
Mx(t) and My (t), respectively. Then Mx_y(t), is given by

Mxyy(t) = E [5XHY)]
= E [eXe]
= E [e™] E[e]
= Mx(t)My (1).

If {Xi}"_, are identical independent random variables from the

same distribution with moment generating function Mx, what is

MZ?:I Xi?



Lemma: moment generating function decides the
distribution

» Let Z1,25,... be a sequence of random variables having
distribution functions Fz and moment generating functions
MZ,,; n> 1.

» Let Z be a random variable having distribution function Fz and
moment generating function M.

> If Mz (t) — Mz(t) for all t, then Fz (t) — Fz(t) for all ¢ at
which Fz(t) is continuous.
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We first assume mean p = 0, variance 0 = 1. (Why we can do
this?)



Proof:

We first assume mean p = 0, variance 0 = 1. (Why we can do
this?)

Let M(t) be the moment generating function of X;. Then the
moment generating function of Y7 ; X;/+/n is given by



Proof:

We first assume mean p = 0, variance 0 = 1. (Why we can do
this?)

Let M(t) be the moment generating function of X;. Then the
moment generating function of Y7 ; X;/+/n is given by

M(5)]"

Let L(t) = log M(t), then

o [n ()] -



Proof:

We first assume mean p = 0, variance 0 = 1. (Why we can do
this?)
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Proof conti

What is the limit of nL(t/+/n) when n — oc?

1 -3/2
n||_>rgo L(;/_\lﬁ) = nll—>n<10 L (ti\;jzg ! (by L'Hépital’s rule)
W
i [HL]
n—oo | o2n—1/2
o _—L”(t/ﬁ)n_3/2t2 o
= nILngo Ry (by L'Hépital’s rule )
—im () E
= dn [ (5) 2]
t? M(0)M"(0) — [M'(0)]?

=5 (as L"(0) = =1)

[M(0)]2
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Proof conti

So as n — oo, [M(t/\/n)]" — et'/2.

What distribution has generating function et’/27

Theorem

Let X1, Xo,... be a sequence of independent and identically
distributed random variables, each having mean . and variance o°.
Then the distribution of

X1+ -+ Xy — np
oy/n

tends to the standard normal as n — oc.
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Notes when applying CLT

» When can CLT be applied?
CLT only applies when N — oo. Empirically, only when N > 30,
you can have confidence to apply it. If N < 10, unless otherwise
noted, we should use Markov inequalities.

» 7 score

When the random variable converges to normal distribution, in

some case we need to know the exact value of integral

6(a) = o= [l e
a -258 | -1.96 | -1.645 | O | 1.645| 1.96 | 2.58

¢(a) | 0.005 | 0.025 | 0.05 | 0.5 | 0.95 | 0.975 | 0.995




Bound for sum of rolling dice

Let X;,i =1,...,10, be independent random variables, each
uniformly distributed over (0, 1). Calculate an approximation to

P{s1% X >6}
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Bound for sum of rolling dice

Let X;,i =1,...,10, be independent random variables, each
uniformly distributed over (0, 1). Calculate an approximation to

P{s1% X >6}
Solution.
First,

35

E(X) = 1, Var(x) = £ [X7] — (EDX) =

Then

29.5 — 35<X—35<40.5—35

350 350 350
V12 \ 12 12
~ 29(1.0184) — 1
~ .692

P{29.5 < X < 40.5} = P
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