Lecture 20: Covariance and correlation Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago

Lecture Outline

Covariance

Correlation

Covariance

Correlation

Expected value of multiplication of functions of independent r.v.

If X and Y are independent, then, for any functions h and g,

E[g(X)h(Y)] = E[g(X)]E[h(Y)]

Continuous case proof:

Recall definition of Var X:

Recall definition of Var X:

The covariance between X and Y, denoted by Cov (X, Y), is defined by

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Alternative form

Properties

(i)
$$Cov(X, Y) = Cov(Y, X)$$

(ii)
$$Cov(X, X) = Var(X)$$

(iii)
$$Cov(aX, Y) = a Cov(X, Y)$$

(iv)
$$\operatorname{Cov}(\sum_{i=1}^{n} X_i, \sum_{i=1}^{m} Y_i) = \sum_{i=1}^{n} \sum_{i=1}^{m} \operatorname{Cov}(X_i, Y_i)$$

Variance of sum

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) + 2\sum_{i < j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

Example: Sample Variance

Let X_1, \ldots, X_n be independent and identically distributed random variables having expected value μ and variance σ^2 , Llet $\bar{X} = \sum_{i=1}^n X_i/n$ be the sample mean. Then what is $Var(\bar{X})$?

Example: Sample Variance

Let X_1, \ldots, X_n be independent and identically distributed random variables having expected value μ and variance σ^2 , Llet $\bar{X} = \sum_{i=1}^n X_i/n$ be the sample mean. Then what is $Var(\bar{X})$? The quantities $X_i - \bar{X}, i = 1, \ldots, n$, are called *deviations*, as they equal the differences between the individual data and the sample mean. The random variable

$$S^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \bar{X})^{2}}{n-1}$$

is called the sample variance. Find $\mathbb{E}[S^2]$.

Covariance

Correlation

The correlation of two random variables X and Y, denoted by $\rho(X, Y)$, is defined, as long as Var(X)Var(Y) is positive, by

$$ho(X,Y) = rac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

The correlation of two random variables X and Y, denoted by $\rho(X, Y)$, is defined, as long as Var(X)Var(Y) is positive, by

$$ho(X,Y) = rac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Then $-1 \leq \rho(X, Y) \leq 1$.

Example: Derivation and sample mean are uncorrelated

Let X_1, \ldots, X_n be independent and identically distributed random variables having variance σ^2 . Then

$$\operatorname{Cov}\left(X_{i}-\bar{X},\bar{X}
ight)=0$$

Given mean and variance of X to be μ and σ^2 , calculate $\rho(X, Y)$, where Y = a + bX.