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Where are we?

Covariance

Correlation



Expected value of multiplication of functions of
independent r.v.

If X and Y are independent, then, for any functions h and g ,

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

Continuous case proof:



Definition of Covariance

Recall definition of VarX :

The covariance between X and Y , denoted by Cov (X ,Y ), is
defined by

Cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]
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Alternative form

Cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]

m
Cov(X ,Y ) = E[XY ]− E[X ]E[Y ]



Properties

(i) Cov(X ,Y ) = Cov(Y ,X )

(ii) Cov(X ,X ) = Var(X)

(iii) Cov(aX ,Y ) = aCov(X ,Y )

(iv) Cov (
∑n

i=1 Xi ,
∑m

i=1 Yj) =
∑n

i=1

∑m
i=1 Cov (Xi ,Yj)



Variance of sum

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi ) + 2
∑
i<j

Cov (Xi ,Xj)



Example: Sample Variance

Let X1, . . . ,Xn be independent and identically distributed random
variables having expected value µ and variance σ2, Llet
X̄ =

∑n
i=1 Xi/n be the sample mean. Then what is Var(X̄ )?

The quantities Xi − X̄ , i = 1, . . . , n, are called deviations, as they
equal the differences between the individual data and the sample
mean. The random variable

S2 =
n∑

i=1

(
Xi − X̄

)2
n − 1

is called the sample variance. Find E
[
S2
]
.
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Where are we?

Covariance

Correlation



Definition

The correlation of two random variables X and Y , denoted by
ρ(X ,Y ), is defined, as long as Var(X ) Var(Y ) is positive, by

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X ) Var(Y )

Then −1 ≤ ρ(X ,Y ) ≤ 1.



Definition

The correlation of two random variables X and Y , denoted by
ρ(X ,Y ), is defined, as long as Var(X ) Var(Y ) is positive, by

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X ) Var(Y )

Then −1 ≤ ρ(X ,Y ) ≤ 1.



Example: Derivation and sample mean are uncorrelated

Let X1, . . . ,Xn be independent and identically distributed random
variables having variance σ2. Then

Cov
(
Xi − X̄ , X̄

)
= 0



Example: if Y = a + bX

Given mean and variance of X to be µ and σ2, calculate ρ(X ,Y ),
where Y = a + bX .
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