
Math 18500 Week 9: Impulse Response and Transfer Functions

Transforms of Piecewise Functions. Consider the function

σ(t) =

{
1 t > 0
0 t < 0

This function (called the unit step function) can be used to model something like the voltage supplied to a
circuit when we “flip a switch” at t = 0. Its graph looks like this:

σ(t)

t

Of course, this function cannot be a realistic model for any actual physical phenomenon - physical quantities
do not change discontinuously. In any realistic situation there would be a very short time period ∆t (on the
order of microseconds or nanoseconds, perhaps) during which the transition from 0 to 1 occurred continuously.
So, it is a good idea to think of σ(t) as a function whose graph looks like this, where ∆t is extremely small:

∆t

1

To model a function which turns on rapidly at t = a, we can use the function σ(t− a):

σ(t− a)

t
a

The Laplace transform of σ(t− a) is given by

L{σ(t− a)} =

∫ ∞

0

σ(t− a)e−st =

∫ ∞

a

e−stdt =
e−st

−s

∣∣∣∣∞
a

=
e−sa

s

Notice that if a = 0, we get

L{σ(t)} =
1

s
= L{1}.
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This is because the Laplace transform of a function f(t) only takes into account the values of f(t) for t > 0. If
two functions agree on the interval [0,∞), like σ(t) and 1 do, then the Laplace transform does not distinguish
them. This does not contradict the Laplace inversion theorem, which only says that the values of f(t) where
t is greater than 0 can be recovered from F (s).

Now suppose we want to compute the Laplace transform of a function f(t) whose graph looks like this:

f(t)

t
1

This can be done by writing f(t) as a linear combination of step functions:

f(t) = σ(t) + σ(t− 1)− 3σ(t− 2)

To understand what makes this formula work, think about what each term does. For t < 0, all three terms
are zero. At t = 0 the first term “turns on” and the value of the function jumps up to 1. At t = 1, the
second term turns on and the value of the function jumps up to 1 + 1 + 0 = 2. At t = 2, the third terms
turns on and the value jumps down to 1 + 1− 3 = −1.

Once we have such a formula, we can get the Laplace transform easily by applying the linearity property of
the Laplace transform:

L{σ(t) + σ(t− 1)− 3σ(t− 2)} = L{σ(t)}+ L{σ(t− 1)} − 3L{σ(t− 2)}

=
1

s
+

e−s

s
− 3

e−2s

s

=
1 + e−s − 3e−2s

s

The formula for the Laplace transform of σ(t− a) can be generalized as follows. Consider a function of the
form y(t− a)σ(t− a), where y(t) is defined on [0,∞) and a > 0. To think visualize a function of this form,
we imagine “suddenly turning on y(t) at time t = a, with a delay of a units of time”. So, if the graph of y(t)
looks like this:

y(t)

t
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then the graph of y(t− a)σ(t− a) would look like this:

y(t− a)σ(t− a)

t
a

The Laplace transform of y(t− a)σ(t− a) is given by

L{y(t− a)σ(t− a)} =

∫ ∞

0

y(t− a)σ(t− a)e−stdt =

∫ ∞

a

y(t− a)e−stdt.

Making the substitution τ = t− a, dτ = dt, we see that

L{y(t− a)σ(t− a)} =

∫ ∞

0

y(τ)e−s(τ+a)dτ = e−sa

∫ ∞

0

y(τ)e−sτdτ = e−saL{y(t)}

So, when we introduce a delay of a units of time, the Laplace transform gets multiplied by e−sa.

This result can be used to calculate the Laplace transform of any function with a piecewise definition. For
example, consider the function g(t) whose graph looks like this:

1 2 3

-2

-1

1

2

This function is given by the following piecewise formula:

g(t) =

 t 0 < t < 1
3− 2t 1 < t < 2

−1 t > 2

This function can be written in terms of step functions, as follows:

g(t) = tσ(t) + ((3− 2t)− t)σ(t− 1) + (−1− (3− 2t))σ(t− 2).

g(t) = tσ(t)− 3(t− 1)σ(t− 1) + 2(t− 2)σ(t− 2)

Therefore, its Laplace transform is

G(s) =
1

s2
− 3e−s

s2
+

2e−2s

s2
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Impulse Response and the Transfer Function. Often we want to know how an oscillator will respond
to an input which is delivered over a very short period of time. An input like this is called an impulse, and
the response of the oscillator is called the impulse response of the oscillator.

For, example consider about an electronic circuit with a resistor, a capacitor, an inductor, a 1-volt battery,
and a switch. Recall that the current through a circuit like this can be modeled by a second order equation

L
d2I

dt2
+R

dI

dt
+

I

C
= V ′(t).

where the forcing term is the derivative of the voltage. If we flip the switch at time t = 0 and “turn on” the
circuit, then we might want to model V (t) using a step function:

V (t) = σ(t) =

{
0 t < 0
1 t > 0

But this presents us with a problem - what function should we use to model the derivative of the voltage?

Naively, we might compute the derivative of σ(t) like this:

σ′(t) =

{
0 t < 0
0 t > 1

= 0

But this would violate the fundamental theorem of calculus, which says that

∫ 1

−1

σ′(t)dt = σ(t)
∣∣1
−1 = 1− 0 = 1.

At this point a mathematician might say, well, σ(t) isn’t differentiable at t = 0, so technically the fundamental
theorem of calculus doesn’t apply to it.

But the real problem is that σ(t) isn’t an appropriate function to use in our model - as we have discussed,
σ(t) is really an idealized version of a function which actually looks like this:

∆t

1
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This function is differentiable, and its derivative looks like this:

∆t

1

The graph of the derivative has a spike during the period of transition, and by the fundamental theorem of
calculus, the area under this spike must be exactly equal to 1.

Thinking in this way leads to a way out of the problem: we can formally introduce a “function” which
satisfies both of the following properties:

δ(t) = 0, t ̸= 0∫ b

a

δ(u)du =

{
1 a ≤ 0 ≤ b
0 else

No actual function can satisfy both properties, so δ(t) cannot really be a function - mathematicians refer to
mathematical constructions like this as generalized functions or distributions.

For the most part, it is only valid to use generalized functions when they appear inside of integrals. For
example, consider an integral of the form ∫ t1

t0

f(t)δ(t− a)dt

where t0 ≤ a ≤ t1. To evaluate an integral like this, we might try to integrate by parts:∫ t1

t0

f(t)δ(t− a)dt = f(t)σ(t− a)|t1t0 −
∫ t1

t0

f ′(t)σ(t− a)

= (f(t1)− 0)−
∫ t1

a

f ′(t)dt

= f(t1)− (f(t1)− f(a))

= f(a)

This identity, ∫ t1

t0

f(t)δ(t− a)dt = f(a),

is valid for any function f(t) and any value of a with t0 ≤ a ≤ t1. Some people take it to be the defining
feature of the delta function.

We can use the identity above to compute the “Laplace transform of a delta function”:

L{δ(t− a)} =

∫ ∞

0

δ(t− a)e−stdt = e−sa

Fortunately, this is the only fact that we need to solve differential equations involving delta functions. Indeed,
suppose that we want to solve an initial value problem

my′′ + by′ + ky = δ(t− a), y(0) = y′(0) = 0,

i.e. we want to model the response of an oscillator to a unit impulse at time t = a.
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Taking the Laplace transform of both sides, we see that

(ms2 + bs+ k)Y (s) = e−sa,

so

Y (s) =
e−sa

ms2 + bs+ k
.

Therefore, the solution is

y(t) = h(t− a)σ(t− a),

where

h(t) = L−1

{
1

ms2 + bs+ k

}
.

This function h(t) is called the impulse response function of the oscillator. Its Laplace transform,

H(s) =
1

ms2 + bs+ k

is called the transfer function of the oscillator.

To understand the significance of the transfer function, consider a general initial value problem with initial
rest conditions

my′′ + by′ + ky = f(t), y(0) = y′(0) = 0.

The Laplace transform of the solution can be found easily:

Y (s) =
F (s)

ms2 + bs+ k
= F (s)H(s).

Therefore, the “black box” model

f(t) y(t)

becomes completely transparent in the frequency domain:

F (s) Y (s) = F (s)H(s)
H(s)

To “transfer” an input through the box, we multiply by the transfer function.

One application of the transfer function is that it encodes the frequency response of the system. To understand
this, suppose we take the input f(t) to be a sinusoid,

f(t) = eiωt

Then the Laplace transform of the response will be

Y (s) = H(s)F (s) =
H(s)

s− iω

To find the solution, we can apply a partial fractions decomposition:

H(s)

s− iω
=

A

s− λ1
+

B

s− λ2
+

C

s− iω

and take the inverse Laplace transform:

y(t) = Aeλ1t +Beλ2t + Ceiωt

Here λ1 and λ2 are roots of the auxiliary equation,

mλ2 + lλ+ k = 0,

so the terms involving A and B are transient. The value of C can be found using the cover-up method.
Multiplying by s− iω gives

H(s) =
A(s− iω)

s− λ1
+

B(s− iω)

s− λ2
+ C
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and from this we can obtain C, by setting s = iω:

C = H(iω)

Therefore the steady state response is
Y (s) = H(iω)eiωt,

and the amplitude of the steady state response is

|H(iω)|.
This is called the frequency response function of the oscillator.

The frequency response function is something we are already familiar with - we encountered it in the form

1

|m(iω)2 + l(iω) + k|
=

1√
(k −mω2)2 + l2ω2

.

Thinking in terms of the transfer function gives us a more enlightening way of remembering this formula!



8

Convolutions. At this point, we still do not know how to solve initial value problems

my′′ + by′ + ky = f(t), , y(0) = y0 , y′(0) = v0

where the right hand side is an arbitrary function of t. We know how to do this in a number of special cases
by guessing, or using Laplace transforms, but we don’t have a general formula.

Such a formula can be derived using the concept of a delta function. For any function f(t) which is defined
on the interval [0,∞), we have:

f(t) =

∫ ∞

0

f(u)δ(t− u)du

The integral on the right hand side can be thought of as a sum of functions of t, indexed by a parameter u.
Intuititively, it tells us that every function is a superposition of delta functions.

There is also a geometric way to visualize the idea that every function is a sum of delta functions. Notice
that we can approximate any continuous function (red) using a piecewise constant function (blue):

y(t)

t

In turn, any piecewise constant function can be viewed as a sum of functions which are zero except on a
small interval of width ∆t, like this one:

y(t)

t

In the limit as ∆t → 0, the function shown above can be approximated by δ(t− u)du, and the sum can be
replaced by an integral - hence,

f(t) =

∫ ∞

0

f(u)δ(t− u)du

Now recall that the solution of the equation

my′′u + by′u + kyu = δ(t− u), y(0) = 0, y′(0) = 0

is given by the formula
yu(t) = h(t− u)σ(t− u),
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where h(t) is the impulse response function. Therefore, to solve the equation

my′′ + by′ + ky = f(t) =

∫ ∞

0

f(u)δ(t− u)du, y(0) = y′(0) = 0,

we can apply the superposition principle (which is just as valid for integrals as it is for sums):

y(t) =

∫ ∞

0

f(u)yu(t)du =

∫ ∞

0

f(u)h(t− u)σ(t− u)du

The integrand above is only nonzero for u < t, so:

y(t) =

∫ t

0

f(u)h(t− u)du.

This is a closed formula for the solution of an arbitrary second order equation with constant coefficients.

Now, maybe you are skeptical of this application of the superposition principle, or maybe you found the
argument confusing - we therefore give a second derivation. In general, given two functions f(t) and g(t) we
can form their convolution:

f(t) ∗ g(t) =
∫ t

0

f(u)g(t− u)du

The convolution of f(t) and g(t) is a new function of t which incorporates the values of both functions.
Convolution is therefore an operation on functions, just like integration or differentiation, but instead of
taking a single function as its input, it takes two functions and “mashes them together” into a new function.

You would be forgiven for finding this operation to be somewhat convoluted (hence the name!). However,
the significance of convolution lies in the fact that the Laplace transform of a convolution is a product :

L{f(t) ∗ g(t)} = F (s)G(s).

Alternatively, the inverse Laplace transform of a product is a convolution:

L−1 {F (s)G(s)} = f(t) ∗ g(t).
This important fact can be derived by reversing the order of integration in a double integral:

L{f(t) ∗ g(t)} =

∫ ∞

0

∫ t

0

f(u)g(t− u)e−stdudt

=

∫ ∞

0

∫ ∞

u

f(u)g(t− u)e−stdtdu

=

∫ ∞

0

f(u)e−su

∫ ∞

u

g(t− u)e−s(t−u)dtdu

=

∫ ∞

0

f(u)e−su

∫ ∞

0

g(v)e−svdvdu

=

∫ ∞

0

f(u)e−suG(s)du

= F (s)G(s)

Now suppose we want to solve an initial value problem with initial rest conditions:

my′′ + by′ + ky = f(t), y(0) = y′(0) = 0.

We can do this by taking the Laplace transform of both sides:

(ms2 + bs+ k)Y (s) = F (s)

Y (s) =
F (s)

ms2 + bs+ k
= F (s)H(s).

Taking the inverse Laplace transform, we obtain the same result as before:

y(t) = L−1 {F (s)H(s)} = f(t) ∗ h(t) =
∫ t

0

f(u)h(t− u)du.
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Green’s Formula. In this optional section, we will explain how to solve arbitrary linear equations

O[y(t)] = f(t),

where O is a second order differential operator

O = m(t)
d2

dt2
+ l(t)

d

dt
+ k(t).

with nonconstant coefficients. Equations of this form might be used to model a mass-spring system whose
properties change over time. For example, the mass on the spring might be a sandbag which is leaking sand,
or the spring constant might decrease over time due to the spring being worn out.

Unfortunately, there is no general method for solving homogeneous second order equations, without resorting
to power series or numerical solutions. However, there is a general method for solving inhomogeneous
equations, provided that we already know all of the solutions of the corresponding homogeneous equation.

This general method is called variation of parameters. To explain how it works, assume that we are given
two functions y1 and y2, which are a fundamental pair of solutions of the homogeneous equation

(1) m(t)y′′ + l(t)y′ + k(t)y = 0,

in the sense that an arbitrary solution of the homogeneous equation takes the form

y(t) = c1y1(t) + c2y2(t)

for some values of c1 and c2.

Then to find a particular solution of the inhomogeneous equation

(2) m(t)y′′ + l(t)y′ + k(t)y = f(t),

we make an ansatz of the form

(3) y = v1y1 + v2y2,

where v1 = v1(t) and v2 = v2(t) are unknown functions (the varying parameters).

This appears to make the problem we are trying to solve even more difficult, since now we must solve for
two unknown functions v1 and v2 instead of the single unknown function y! However, we will immediately
remove this extra degree of freedom by imposing a simplifying constraint on v1 and v2.

To substitute the ansatz (3) into equation (2), we first compute the derivatives of y using the product rule:

y = (v1y1 + v2y2)

y′ = (v1y
′
1 + v2y

′
2) + (v′1y1 + v′2y2)

y′′ = (v1y
′′
1 + v2y

′′
2 ) + (v′1y

′
1 + v′2y

′
2) + (v′1y1 + v′2y2)

′

To simplify this, we can impose the following constraint on v1 and v2,

(4) v′1y1 + v′2y2 = 0

With this simplifying constraint, the derivatives of y become

y = (v1y1 + v2y2)

y′ = (v1y
′
1 + v2y

′
2)

y′′ = (v1y
′′
1 + v2y

′′
2 ) + (v′1y

′
1 + v′2y

′
2)

If we then substitute into (2), we get

m(v′1y
′
1 + v′2y

′
2) +m(v1y

′′
1 + v2y

′′
2 ) + l(v1y

′
1 + v2y

′
2) + k(v1y1 + v2y2) = f.

Since y1 and y2 are solutions of (1), the last three terms on the left hand side cancel, leaving the equation

v′1y
′
1 + v′2y

′
2 =

f

m
.

We therefore have a system of two equations for v′1 and v′2:

v′1y1 + v′2y2 = 0

v′1y
′
1 + v′2y

′
2 =

f

m
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To solve this system of equations, we multiply the first equation by y′2, multiply the second equation by y2,
and subtract:

v′1(y1y
′
2 − y′1y2) = − f

m
Solving for v′1, we find that

v′1 = − f

m(y1y′2 − y′1y2)
= − y2f

mW

where W = y1y
′
2 − y2y

′
1 is an auxilliary function called the Wronskian of y1 and y2.

Integrating, we get a particular solution v1(t) which satisfies v1(t0) = 0:

v1 = −
∫ t

t0

y2(u)f(u)

m(u)W (u)
du.

Similarly, we can find a solution v2 which satisfies v2(0) = 0:

v2 =

∫ t

t0

y1(u)f(u)

m(u)W (u)
du

Therefore, one particular solution of the inhomogeneous equation is

(5) yp(t) = v1(t)y1(t) + v2(t)y2(t) =

∫ t

t0

y1(u)y2(t)− y1(t)y2(u)

m(u) (y1(u)y′2(u)− y2(u)y′1(u))
f(u)du

This solution satisfies the simplest possible initial conditions

yp(t0) = v1(t0)y1(t0) + v2(t0)y2(t0) = 0

y′p(t0) = v′1(t0)y1(t0) + v1(t0)y
′
1(t0) + v′2(t0)y2(t0) + v2(t0)y2(t0)

= v′1(t0)y1(t0) + v′2(t0)y2(t0) = 0

where in the last line above we have used the assumption (4).

The function which appears inside the integral in (5),

G(t, u) =
y1(u)y2(t)− y1(t)y2(u)

m(u) (y1(u)y′2(u)− y2(u)y′1(u))
,

is called Green’s function for the operator O. We will refer to the formula

yp(t) =

∫ t

t0

G(t, u)f(u)du.

as Green’s formula (but this terminology is not standard). It is a generalization of the formula

yp(t) =

∫ t

t0

h(t− u)f(u)du

which we derived previously for operators with constant coefficients.

A technical caveat is now in order. Green’s formula is only valid if we make two assumptions:

(1) The Wronskian of y1 and y2 must be nonzero.
(2) The leading coefficient m(t) in the operator L must be nonzero.

These conditions together guarantee that there is no division by zero in equation (5).

A linear differential operator O which satisfies the condition (2) is said to be regular. In general, solutions
of linear differential equations are only guaranteed on intervals where the corresponding operator is regular.

Notice that in Green’s formula we only need values of G(t, u) for u ≤ t. In fact, it makes sense to define

G(t, u) =

{
0 t < u

y1(u)y2(t)−y1(t)y2(u)

m(u)(y1(u)y′
2(u)−y2(u)y′

1(u))
t ≥ u

With this definition, Green’s formula can also be written as

yp(t) =

∫ ∞

t0

G(t, u)f(u)du
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To better understand why it is a good idea to make this definition, say we want to solve the equation

m(t)y′′ + l(t)y′ + k(t)y = δ(t− t0)

i.e. we want to obtain the response to an impulse at time t = t0. Then we can apply Green’s formula:

y(t) =

∫ t

0

G(t, u)δ(u− t0)du = G(t, t0)

This result explains the physical meaning of the Green’s function - for any fixed value of u, the Green’s
function is the response of the oscillator to an impulse at time t = u. It also explains why it’s a good idea
to define G(t, u) = 0 for t < u - the oscillator should be at rest before the impulse occurs.

Finally, another way to understand the role of the Green’s function is to introduce the integral operator

I[f(t)] =
∫ t

t0

G(t, u)f(u)du.

With this notation, what we have showed above is that

O[I[f(t)]] = f(t),

for any function f(t). This is analogous to the fundamental theorem of calculus, which states that

d

dt

∫ t

t0

f(u)du = f(t).

From this point of view, Green’s formula is a vast generalization of the fundamental theorem of calculus!
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