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Binomial random variables

Toss a fair coin n times. What is the probability of k heads?

What if the coin has probability p of coming up heads?



Binomial random variables

A Bernoulli random variable with parameter p ∈ [0, 1] has value

X =

{
1 with probability p

0 with probability 1− p.

A binomial random variable with parameters n, p has value

X = k with probability

(
n

k

)
pk(1− p)n−k .

If Xi ∼ Bernoulli(p) for i = 1, . . . , n, then

X1 + X2 + · · ·+ Xn ∼ Binomial(n, p).



Examples

If a room contains n people, what is the probability that exactly k
of them were born on Monday?

If n = 100, what is the probability that at most 98 of them were
born on Monday?
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Expectation

If X ∼ Binomial(n, p), what is E[X ]? We may compute

E[X ] =
n∑

k=0

kP(X = k)

=
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑

k=0

k
n!

(n − k)!k!
pk(1− p)n−k

=
n∑

k=0

n!

(n − k)!(k − 1)!
pk(1− p)n−k

= np
n∑

k=0

(n − 1)!

(n − k)!(k − 1)!
pk−1(1− p)n−k

= np.



Expectation (alternate approach)

If X ∼ Binomial(n, p), what is E[X ]?

Recall X = X1 + · · ·+ Xn, where Xi ∼ Bernoulli(n, p).

By linearity of expectation, we have

E[X ] = E[X1 + · · ·+ Xn]

= E[X1] + · · ·+ E[Xn]

= np,

where we note that E[Xi ] = p.

Again, again and again, in probabilty world, definition of
independent and expectation do not always follow your intuition.



Variance

If X ∼ Binomial(n, p), what is Var(X )? We may compute

E[X 2] =
n∑

k=0

k2P(X = k)

=
n∑

k=0

k2
(
n

k

)
pk(1− p)n−k

=
n∑

k=0

k2
n!

(n − k)!k!
pk(1− p)n−k

= np
n∑

k=0

k
(n − 1)!

(n − k)!(k − 1)!
pk−1(1− p)n−k

= np
n∑

k=0

(n − 1)!

(n − k)!(k − 1)!
pk−1(1− p)n−k

+ n(n − 1)p2
n∑

k=0

(n − 1)!

(n − k)!(k − 2)!
pk−2(1− p)n−k



Variance

If X ∼ Binomial(n, p), what is Var(X )? We may compute

E[X 2] = np
n∑

k=0

k
(n − 1)!

(n − k)!(k − 1)!
pk−1(1− p)n−k

= np
n∑

k=0

(n − 1)!

(n − k)!(k − 1)!
pk−1(1− p)n−k

+ n(n − 1)p2
n∑

k=0

(n − 2)!

(n − k)!(k − 2)!
pk−2(1− p)n−k

= np + n(n − 1)p2

= np + n2p2 − np2.

In addition, we have E[X ]2 = n2p2, so

Var(X ) = np + n2p2 − np2 − n2p2 = np(1− p).



Variance (alternate approach)

If X ∼ Binomial(n, p), what is Var[X ]?

Recall X = X1 + · · ·+ Xn, where Xi ∼ Bernoulli(n, p).

We may compute

E[X 2] = E

 n∑
i ,j=1

XiXj

 =
n∑

i ,j=1

E[XiXj ]

=
n∑

i=1

E[X 2
i ] + 2

∑
i<j

E[XiXj ] = np + n(n − 1)p2.

As before, this means

Var(X ) = E[X 2]− E[X ]2 = np(1− p).
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Problems

An airplane seats 198, but the airline has sold 200 tickets. Each
person independently has a 0.05 chance of not showing up for the
flight. What is the probability that more than 200 people will show
up for the flight?



Problems

In a 100 person senate, 40 people always vote for the Republicans,
40 people always vote for the Democrats, and 20 people toss a
coin to decide which way to vote. What is the probability that a
given vote is tied?
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