Lecture 9: Binomial random variables Statistics 251

Yi Sun and Zhongjian Wang

Department of Statistics The University of Chicago

Bernoulli and binomial random variables

Expectation and variance

Problems

Binomial random variables

Toss a fair coin n times. What is the probability of k heads?

What if the coin has probability p of coming up heads?

Binomial random variables

A **Bernoulli** random variable with parameter $p \in [0, 1]$ has value

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

A **binomial** random variable with parameters n, p has value

$$X=k$$
 with probability $inom{n}{k}p^k(1-p)^{n-k}.$

If $X_i \sim \text{Bernoulli}(p)$ for $i = 1, \ldots, n$, then

$$X_1 + X_2 + \cdots + X_n \sim \mathsf{Binomial}(n, p).$$

Examples

If a room contains n people, what is the probability that exactly k of them were born on Monday?

If n = 100, what is the probability that at most 98 of them were born on Monday?

Bernoulli and binomial random variables

Expectation and variance

Problems

Expectation

If $X \sim \text{Binomial}(n, p)$, what is $\mathbb{E}[X]$? We may compute

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \mathbb{P}(X = k)$$

= $\sum_{k=0}^{n} k {n \choose k} p^{k} (1-p)^{n-k}$
= $\sum_{k=0}^{n} k \frac{n!}{(n-k)!k!} p^{k} (1-p)^{n-k}$
= $\sum_{k=0}^{n} \frac{n!}{(n-k)!(k-1)!} p^{k} (1-p)^{n-k}$
= $np \sum_{k=0}^{n} \frac{(n-1)!}{(n-k)!(k-1)!} p^{k-1} (1-p)^{n-k}$
= np .

Expectation (alternate approach)

If $X \sim \text{Binomial}(n, p)$, what is $\mathbb{E}[X]$?

Recall $X = X_1 + \cdots + X_n$, where $X_i \sim \text{Bernoulli}(n, p)$.

By linearity of expectation, we have

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_n]$$

= $\mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$
= np ,

where we note that $\mathbb{E}[X_i] = p$.

Again, again and again, in probability world, definition of independent and expectation do not always follow your intuition.

Variance

If $X \sim \text{Binomial}(n, p)$, what is Var(X)? We may compute

$$\mathbb{E}[X^2] = \sum_{k=0}^n k^2 \mathbb{P}(X=k)$$

$$= \sum_{k=0}^n k^2 \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^n k^2 \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k}$$

$$= np \sum_{k=0}^n k \frac{(n-1)!}{(n-k)!(k-1)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^n \frac{(n-1)!}{(n-k)!(k-1)!} p^{k-1} (1-p)^{n-k}$$

$$+ n(n-1)p^2 \sum_{k=0}^n \frac{(n-1)!}{(n-k)!(k-2)!} p^{k-2} (1-p)^{n-k}$$

Variance

If $X \sim \text{Binomial}(n, p)$, what is Var(X)? We may compute

$$\mathbb{E}[X^2] = np \sum_{k=0}^n k \frac{(n-1)!}{(n-k)!(k-1)!} p^{k-1} (1-p)^{n-k}$$

= $np \sum_{k=0}^n \frac{(n-1)!}{(n-k)!(k-1)!} p^{k-1} (1-p)^{n-k}$
+ $n(n-1)p^2 \sum_{k=0}^n \frac{(n-2)!}{(n-k)!(k-2)!} p^{k-2} (1-p)^{n-k}$
= $np + n(n-1)p^2$
= $np + n^2p^2 - np^2$.

In addition, we have $\mathbb{E}[X]^2 = n^2 p^2$, so

$$Var(X) = np + n^2p^2 - np^2 - n^2p^2 = np(1-p).$$

Variance (alternate approach)

If $X \sim \text{Binomial}(n, p)$, what is Var[X]?

Recall $X = X_1 + \cdots + X_n$, where $X_i \sim \text{Bernoulli}(n, p)$.

We may compute

$$\mathbb{E}[X^2] = \mathbb{E}\left[\sum_{i,j=1}^n X_i X_j\right] = \sum_{i,j=1}^n \mathbb{E}[X_i X_j]$$
$$= \sum_{i=1}^n \mathbb{E}[X_i^2] + 2\sum_{i< j} \mathbb{E}[X_i X_j] = np + n(n-1)p^2.$$

As before, this means

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = np(1-p).$$

Bernoulli and binomial random variables

Expectation and variance

Problems

Problems

An airplane seats 198, but the airline has sold 200 tickets. Each person independently has a 0.05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?

Problems

In a 100 person senate, 40 people always vote for the Republicans, 40 people always vote for the Democrats, and 20 people toss a coin to decide which way to vote. What is the probability that a given vote is tied?