
MH3520:Mathematics of Deep Learning

Zhongjian Wang

Nanyang Technological University Singapore

MH3520-Ch.0, p.1

Welcome to the course on mathematics of deep learning

Instructor: Zhongjian Wang

Contact: zhongjian.wang@ntu.edu.sg or Teams

Office Hour: Thursday 15:30 - 16:20

Office Location: SPMS-MAS-05-23

Special thanks for the previous instructor Dr. Phillip Harms who
suggested me to significantly adapt the difficulty of the course. I am
pursuing it on a running basis.

MH3520-Ch.0, p.2

Overview of the course

1 Introduction to deep learning

2 Basics of numerical optimization

3 Training neural networks

4 Basics of probability theory

5 Statistical learning theory

6 Basics of functional analysis

7 Universality of multi-layer perceptrons

8 Basics of approximation theory

9 Splines and approximation by wide networks

10 Analyticity and approximation by deep networks

The following are optional chapters for further reading.

Harmonic analysis and approximation by wide networks

Coding theory and best approximation rates

MH3520-Ch.0, p.3

Contents of the course

This course presents several mathematical perspectives on deep learning:

Numerical optimization: The training of neural networks is a
high-dimensional nonlinear optimization problem, which is solved by
stochastic gradient descent.

Statistical Learning Theory: The goal in supervised learning is to
estimate an unknown function from noisy data. Statistical learning
theory provides a general error analysis for problems of this kind.

Function Approximation: Under suitable conditions, any function can
be approximated with arbitrary accuracy by neural networks. Function
approximation theory provides upper bounds for the approximation
error in relation to the size of the network.

Coding theory (Optional Reading): A trained neural network can be
seen as an encoder for the learned function. Coding theory provides
lower bounds for the approximation error in relation to the size of the
network.

MH3520-Ch.0, p.4

Intended Learning Outcomes

This course should help you. . .

Understand why and under what conditions deep learning methods
can be expected to work well—or not.

Dive into the diverse mathematical theories which have a say on this
matter.

Appreciate the many open questions and challenges on the road
towards a more complete understanding of deep learning.

Get started with numerical implementations of simple learning tasks
in Python.

MH3520-Ch.0, p.5

Beyond the scope of this course

The following topics are not covered in the course:

Generalization error: This course focusses on bounds for the
approximation error and merely touches upon the generalization error.
Bounds on both errors are needed for a complete error analysis.

Unsupervised learning: This course focusses on supervised learning
and does not cover unsupervised learning via deep networks (e.g.
autoencoders or reinforcement learning).

Efficient Numerics: Despite their importance, advances in software
and hardware implementations of deep learning algorithms are beyond
the scope of this course. (e.g. GPU acceleration)

Applications: While deep learning methods have been adopted in a
plethora of diverse applications, this course focusses on the underlying
theoretical principles. (e.g. AI, genAI)

MH3520-Ch.0, p.6

Prerequisites

The following courses are prerequisites:

MH2100 Calculus III: Differential calculus in multiple dimensions is
needed for continuous optimization methods such as gradient descent.

MH3500 Statistics: Some basic notions and results of probability
theory and asymptotic statistics are needed for statistical learning
theory.

MH3600 Introduction to Topology: Point-set topology and functional
analysis are needed for function approximation theory.

PS0001 Introduction to Computational Thinking: You should be able
to derive simple algorithms and code them in Python.

Please let me know if you feel that your background in any of these areas
is insufficient. There will be opportunities for getting everyone on track.

MH3520-Ch.0, p.7

Related classes at NTU

In the Division of Mathematics:

MH4510 Statistical Learning and Data Mining: This course treats a
variety of machine learning methods besides deep learning.

MH4517 Data Applications in Natural Sciences This course covers
various methods in geometric and topological data analysis.

MHXXXX Statistical learning theory: There might be plans for a new
course on this topic, which would complement the present one by
focussing on the generalization error.

At the School of Computer Science and Engineering:

CE7454 Deep Learning for Data Science: Mathematical foundations
and best engineering practices of modern deep learning.

CE7455 Deep Learning for Natural Language Processing: From
Theory to Practice

MH3520-Ch.0, p.8

Walking the way together

This course offers:

Beautiful but challenging mathematics: some old and some new, all
related to why and how deep learning works, often abstract and
sometimes hard to digest.

My role:

Fetch you where you stand, provide good content, adapt to your
feedback, and help you overcome obstacles

Share my passion and curiosity and learn from you

Your responsibilities:

Do your homework! Continuous exercise is key, in mathematics as in
sport. Repetition forges and consolidates skills.

Collaborate and help each other! Math is more than numbers.

Make the best of your time here. Don’t shy away from asking
questions. Give me feedback.

MH3520-Ch.0, p.9

Workload and assessments

Direct contact:

Lecture: 3 hours per week

Tutorial: 1 hour per week

Homework and independent study:

Homework: 1.5 hours per week (but no mid-term exam)

Reworking the lecture, further reading: 3 hours per week (according
to AU-ETCS conversion guide)

Assessments:

Written homework: 20% (point-based)

Oral presentations: 20% (rubric for quality of solution/presentation)

Written final exam: 60% (point-based)

MH3520-Ch.0, p.10

Homework

Problem sets:

Problem sets are available on NTULearn around a week ahead of time.

Solutions:

Before Thursday’s lecture, hand in your solution as a scanned .pdf or
.ipynb on NTULearn.

There, you will also have to indicate what problems you have solved
(more on this later).

Collaboration:

It is recommended that you work in pairs.

If you do so, name your collaborator and submit individually.

MH3520-Ch.0, p.11

Tutorials

Presentations of solutions:

For any problem marked as solved in NTULearn, you may be
requested to present your solution in the tutorial.

You will be asked to present at least twice, depending on class size.

You will be assessed on the quality of your solution and presentation.

You should be able to explain your solution and the relevant
mathematical background.

MH3520-Ch.0, p.12

Contact

During the lectures and tutorials:

Questions are always welcome; just raise your hand.

Conversely, I will also ask questions to you.

On NTULearn:

This is the preferred way of written contact.

There is a forum for questions and discussions.

Please answer your colleagues’ questions if you know the answer.

Per Email:

Only as a last resort: zhongjian.wang@ntu.edu.sg

MH3520-Ch.0, p.13

Question to Answer for Yourself / Discuss with Friends

After the lecture: Find a buddy for solving the homework together.
You may also use the forum on NTULearn for this.

Reflection: What would you, personally, like to learn in this course?

Reflection: How much time can you set aside for homework and
independent study? Try to integrate this into your weekly schedule.

MH3520-Ch.0, p.14

MH3520:Mathematics of Deep Learning

Chapter 1

Introduction to deep learning

MH3520-Ch.1, p.1

Overview of Chapter 1

1 Deep learning in the news

2 Brief history of deep learning

3 Multilayer Perceptrons

4 Deep learning as a way of programming (Optional)

5 Deep learning as representation learning

6 Towards a mathematical theory of deep learning

7 Classification by Machine Learning (Optional)

MH3520-Ch.1, p.2

Sources for this chapter:

Hutter and Boedecker: Course on Deep Learning. University of
Freiburg, Germany.

Goodfellow, Bengio, and Courville: Deep learning. MIT Press, 2016.

MH3520-Ch.1, p.3

MH3520 Chapter 1

Part 1

Deep learning in the news

MH3520-Ch.1, p.4

Deep learning in the news

MH3520-Ch.1, p.5

Deep learning revolutionized computer vision

Excellent empirical results via convolutional networks:

ILSVRC: ImageNet Large-Scale Visual Recognition Challenge

MH3520-Ch.1, p.6

Deep learning revolutionized speech recognition

Excellent empirical results using LSTM and attention-based networks:

MH3520-Ch.1, p.7

Deep learning revolutionized optimal control

Excellent empirical results via deep reinforcement learning:

Superhuman performance in
playing Atari games
[Mnih et al, Nature 2015]

Beating the world’s best Go
player [Silver et al, Nature 2016]

MH3520-Ch.1, p.8

Deep learning in other news

Failures: Sand dunes mistaken for nudes in software used by the
British police. [Telegraph, 18 Dec. 2017]

Adversarial attacks: Manipulated stop signs mistaken for speed limits
[Eykholt e.a., 2018]

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

Figure 1: The left image shows real graffiti on a Stop sign,
something that most humans would not think is suspicious.
The right image shows our a physical perturbation applied
to a Stop sign. We design our perturbations to mimic graffiti,
and thus “hide in the human psyche.”

the viewing camera. Additionally, other practicality chal-
lenges exist: (1) Perturbations in the digital world can be
so small in magnitude that it is likely that a camera will not
be able to perceive them due to sensor imperfections. (2)
Current algorithms produce perturbations that occupy the
background imagery of an object. It is extremely difficult
to create a robust attack with background modifications be-
cause a real object can have varying backgrounds depending
on the viewpoint. (3) The fabrication process (e.g., printing
of perturbations) is imperfect.

Informed by the challenges above, we design Robust
Physical Perturbations (RP2), which can generate perturba-
tions robust to widely changing distances and angles of the
viewing camera. RP2 creates a visible, but inconspicuous
perturbation that only perturbs the object (e.g. a road sign)
and not the object’s environment. To create robust perturba-
tions, the algorithm draws samples from a distribution that
models physical dynamics (e.g. varying distances and an-
gles) using experimental data and synthetic transformations
(Figure 2).

Using the proposed algorithm, we evaluate the effective-
ness of perturbations on physical objects, and show that
adversaries can physically modify objects using low-cost
techniques to reliably cause classification errors in DNN-
based classifiers under widely varying distances and angles.
For example, our attacks cause a classifier to interpret a
subtly-modified physical Stop sign as a Speed Limit 45 sign.
Specifically, our final form of perturbation is a set of black
and white stickers that an adversary can attach to a physical
road sign (Stop sign). We designed our perturbations to re-
semble graffiti, a relatively common form of vandalism. It
is common to see road signs with random graffiti or color
alterations in the real world as shown in Figure 1 (the left
image is of a real sign in a city). If these random patterns
were adversarial perturbations (right side of Figure 1 shows
our example perturbation), they could lead to severe conse-
quences for autonomous driving systems, without arousing
suspicion in human operators.

Given the lack of a standardized method for evaluating

Figure 2: RP2 pipeline overview. The input is the target Stop
sign. RP2 samples from a distribution that models physical
dynamics (in this case, varying distances and angles), and
uses a mask to project computed perturbations to a shape
that resembles graffiti. The adversary prints out the resulting
perturbations and sticks them to the target Stop sign.

physical attacks, we draw on standard techniques from the
physical sciences and propose a two-stage experiment de-
sign: (1) A lab test where the viewing camera is kept at
various distance/angle configurations; and (2) A field test
where we drive a car towards an intersection in uncontrolled
conditions to simulate an autonomous vehicle. We test our
attack algorithm using this evaluation pipeline and find that
the perturbations are robust to a variety of distances and
angles.
Our Contributions. Figure 2 shows an overview of our
pipeline to generate and evaluate robust physical adversarial
perturbations.

1. We introduce Robust Physical Perturbations (RP2) to
generate physical perturbations for physical-world ob-
jects that can consistently cause misclassification in a
DNN-based classifier under a range of dynamic physi-
cal conditions, including different viewpoint angles and
distances (Section 3).

2. Given the lack of a standardized methodology in eval-
uating physical adversarial perturbations, we propose
an evaluation methodology to study the effectiveness
of physical perturbations in real world scenarios (Sec-
tion 4.2).

3. We evaluate our attacks against two standard-
architecture classifiers that we built: LISA-CNN with
91% accuracy on the LISA test set and GTSRB-CNN
with 95.7% accuracy on the GTSRB test set. Using two
types of attacks (object-constrained poster and sticker
attacks) that we introduce, we show that RP2 produces
robust perturbations for real road signs. For example,
poster attacks are successful in 100% of stationary and
drive-by tests against LISA-CNN, and sticker attacks
are successful in 80% of stationary testing conditions

Deepfakes: fake news, hoaxes, fake porn, bullying, financial fraud,
etc. [Wikipedia, Deepfake]

MH3520-Ch.1, p.9

Some criticism of deep learning

Greedy: Requires too much data.

Unreliable: Transfers badly, generalizes badly.

Opaque: Lacks interpretability.

Naive: Cannot reason, lacks genuine knowledge and common sense.

Biased: Reproduces biases inherent in the training data, confounds
correlation and causation.

Unsafe: Prone to adversarial attacks.

Dangerous: Can be misused.

[Marcus, 2018] [Tsimenidis, 2012]

MH3520-Ch.1, p.10

Questions to answer for yourself / discuss with friends

Repetition: What areas have been revolutionized by deep learning?

Repetition: Name some actual or potential problems with deep
learning.

Discussion: What other areas have been impacted by deep learning,
for good or bad?

Discussion: How would you describe the difference between artificial
intelligence, machine learning, and deep learning?

MH3520-Ch.1, p.11

MH3520 Chapter 1

Part 2

Brief history of deep learning

MH3520-Ch.1, p.12

Biological inspiration of artificial neural networks

AXON

dendrites

SYNAPSES

soma

Dendrites input information to the cell

Neuron fires (has action potential) if a certain threshold for the
voltage is exceeded

Output of information by axon

The axon is connected to dentrites of other cells via synapses

Learning: adaptation of the synapse’s efficiency, its synaptical weight

MH3520-Ch.1, p.13

History of deep learning: first wave

Deep Learning has developed in several waves

The early days, under the name of artificial neural networks/cybernetics:

1942 Artificial neurons as a model of brain function [McCulloch/Pitts]

1949 Hebbian learning [Hebb]

1958 Rosenblatt perceptron [Rosenblatt]

1960 Adaline → stochastic gradient descent [Widrow/Hoff]

The first time the popularity of NNs declined:

Negative result: linear models cannot represent the XOR function

Backlash against biologically inspired learning [Minsky/Papert, 1969]

MH3520-Ch.1, p.14

History of deep learning: second wave

1980 - early 2000s (under the name of connectionism):

1980 Neocognitron [Fukushima]

1986 Multilayer Perceptrons and backpropagation [Rumelhart et al.]

1989 Autoencoders [Baldi and Hornik],
Convolutional neural networks [LeCun]

1997 Long short-term memory (LSTM) networks [Hochreiter and

Schmidhuber]

The second time the popularity of NNs declined

Ventures based on NNs made unrealistically ambitious claims

– AI research could not fulfill these unreasonable expectations

Other fields of machine learning made advances

– E.g., support vector machines (SVMs) and graphical models
– SVMs were the state of the art on many datasets (data was small),

specialized ConvNets held state of the art on MNIST but didn’t scale

MH3520-Ch.1, p.15

History of deep learning: third wave

Mid 2000s, the field got re-invigorated:

Greedy layer-wise pretraining [Hinton, 2006]

- It was now possible to train much deeper networks

Several groups “resurrected” the idea of training large neural
networks supervisedly using large amounts of data.

- Most prominently [Krizhevsky et al., 2012] improved results on Imagenet
benchmark by large margin

Since then: exponential growth

- NeurIPS attendance has grown exponentially
- In 2018, it sold out in 12 minutes; lottery system since then
- Some people are raising unrealistic expectations
- Let’s see how long this current wave persists

MH3520-Ch.1, p.16

Questions to answer for yourself / discuss with friends

Repetition: For each of the ups and downs in the history of deep
learning, describe why it happened.

Discussion: How long will the current deep learning wave persist?

– What are reasons that it will continue?
– What are reasons that it will end?

MH3520-Ch.1, p.17

MH3520 Chapter 1

Part 3

Multilayer Perceptrons

MH3520-Ch.1, p.18

McCulloch and Pitts neuron

The first neural network was devised by McCulloch and Pitts (1943) in an
attempt to model a biological neuron.

Definition

A McCulloch and Pitts neuron is a composition

f = ρ ◦ T : Rd → R,

where T : Rd → R is an affine function and ρ = 1R+ : R→ R.

Recall that an affine function is a linear plus a constant function:
T (x) = Ax+ b for some weights A ∈ L(Rd,R) and some bias b ∈ R.

ρ is called activation function. The neuron is said to fire if ρ returns
1, i.e., iff Ax exceeds the threshold −b.
The specific activation function of McCulloch and Pitts is rarely used
today.

MH3520-Ch.1, p.19

Multi-layer perceptron

A multi-layer perceptron, as introduced by Rosenblatt (1958), links
multiple neurons together in the sense that the output of one neuron
forms an input to another.

Definition

A multi-layer perceptron with L layers and activation function ρ : R→ R
is a function

f : RN0 → RNL , F = TL ◦ ρ ◦ TL−1 ◦ · · · ◦ ρ ◦ T1,

where for each l ∈ {1, . . . , L}, Nl is a natural number, Tl : RNl−1 → RNl

is an affine function, and ρ is applied coordinate-wise.

Remark. We will reserve the name neural network for the parameters of
the multi-layer perceptron; see later. This distinction is not commonly
made in the literature, and we won’t be overly strict about it.

MH3520-Ch.1, p.20

Structure of multilayer perceptrons

Multi-layer perceptrons do not allow arbitrary connections between
neurons, but only between those in adjacent layers, and only from
lower layers to higher layers.

All layers share the same activation function. This can be relaxed.

[figure from Petersen, Ch. 1]

MH3520-Ch.1, p.21

Examples of activation functions

Logistic (sigmoid) function:

ρ(z) =
1

1 + exp(−z)

Used in top layer for binary
classification.

8 6 4 2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Hyperbolic tangent:

ρ(z) = tanh(z)

=
exp(z)− exp(−z)
exp(z) + exp(−z)

Used in top layer for binary
classification. 8 6 4 2 0 2 4 6 8

1.0

0.5

0.0

0.5

1.0

MH3520-Ch.1, p.22

Examples of activation functions (cont.)

Linear function:

ρ(z) = z

Used in top layer for
(generalized) linear regression.

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

Rectified linear unit (ReLU):

ρ = max(0, z)

Used in all layers for general
purpose.

2 1 0 1 2
0

1

2

MH3520-Ch.1, p.23

Deep learning

Deep learning is the use of multi-layer perceptrons in learning tasks.

We will focus on supervised learning: given input-output pairs
(xi, yi), the goal is to find a function f such that f(xi) is close to yi.

A loss function ℓ is used to quantify the meaning of proximity.

Definition (Supervised deep learning)

Given input-output pairs (x1, y1), . . . , (xn, yn), the task is to find a
multi-layer perceptron f which minimizes

∑
i ℓ(f(xi), yi).

MH3520-Ch.1, p.24

Loss functions

The choice of loss function depends on what kind of data is represented by
ŷ = f(x) and y:

Quadratic loss when ŷ, y belong to a normed vector space:

ℓ(ŷ, y) = ∥ŷ − y∥2.

Binary cross-entropy loss when ŷ, y ∈ [0, 1] are probability densities on
the set {0, 1} of binary outcomes:

ℓ(ŷ, y) = −
(
y log ŷ + (1− y) log(1− ŷ)

)
.

Categorical cross-entropy loss when ŷ, y are probability densities on a
finite set {1, . . . , k}:

ℓ(ŷ, y) = −
k∑

j=1

yj log ŷj .

MH3520-Ch.1, p.25

Questions to answer for yourself / discuss with friends

Repetition: What is a multi-layer perceptron?

Repetition: What kind of activation and loss functions are commonly
used?

Discussion: Can you think of any network architectures which do not
satisfy our definition of multi-layer perceptrons?

MH3520-Ch.1, p.26

MH3520 Chapter 1

Part 4

Deep learning as a way of programming (Optional)

MH3520-Ch.1, p.27

Understanding versus learning from experience

We don’t understand how the human brain solves certain problems:

Face recognition

Playing Atari games

Speech recognition

Picking the next move in the game of Go

We can nevertheless deep-learn these tasks from data/experience:

If the task changes, we simply re-train.

The resulting systems may be too complex for us to understand:

For example, deep neural networks such as AlphaGo have millions of
weights.

David Silver, lead author of AlphaGo cannot explain its moves.

Paraphrased: “You would have to ask a Go expert.”

MH3520-Ch.1, p.28

Deep learning as a way of programming

It is very quick to get good results for some problems:

Deep learning can handle raw data directly (images, speech, text, etc).

Well-engineered libraries such as Tensorflow or Pytorch handle the
complex underpinnings.

Very little machine learning knowledge is required to get started.

Deep learning is widely applicable:

Neural networks are very flexible models—this is the main content of
the lecture.

The same general techniques apply to many types of structured data
(images, speech, text, etc).

There is an amazing potential for cross-fertilization.

Fields that drifted apart for decades have converged again: computer
vision, speech recognition, natural language processing, robotics, . . .

MH3520-Ch.1, p.29

Wide applicability of deep learning: example tasks

Classification: input Rn → categories (e.g., {cat, dog, human})

Regression: input Rn → R (e.g., house prizes)

Structured output prediction: structured output (vector, graph, etc)

– Pixel-wise segmentation: image → image
– Machine translation: sequence → sequence
– Parsing: text → tree whose nodes are verbs, nouns, adverbs, etc
– Image captioning: image → sentence
– Denoising: corrupted example x̃ ∈ Rn → clean example x ∈ Rn

– Generation: sentence → image, text

[Valada et al, 2018] [Google Translate] [T. Chen et al, 2017] [C. Chen et al, 2018]

MH3520-Ch.1, p.30

Question to answer for yourself / discuss with friends

Repetition: From a programming perspective, what are some
advantages and disadvantages of deep learning?

Discussion: Are you aware of any data types that do not easily lend
themselves to deep learning?

Discussion: Do you agree with the distinction of understanding versus
learning from experience?

MH3520-Ch.1, p.31

MH3520 Chapter 1

Part 5

Deep learning as representation learning

MH3520-Ch.1, p.32

Feature engineering

Standard machine learning algorithms are based on high-level
attributes or features of the data

E.g., the binary attributes we would use for decisions trees

This requires (often substantial) feature engineering

MH3520-Ch.1, p.33

Representation learning

“a set of methods that allows a machine
to be fed with raw data and to automati-
cally discover the representations needed
for detection or classification” [LeCun et

al., 2015]

MH3520-Ch.1, p.34

Example: representations via change of coordinates

Euclidean coordinates
Not linearly separable

Polar coordinates
Linearly separable

[Figure from Goodfellow e.a., p. 4, 2016]

MH3520-Ch.1, p.35

Example: representations of natural numbers

The Roman number representation is poor for the task of addition.
E.g., perform CCCLXIX + DCCCXLV (369 + 845)

1 Substitute for any subtractives : CCCLXVIIII + DCCCXXXXV

2 Concatenate: CCCLXVIIIIDCCCXXXXV

3 Sort : DCCCCCCLXXXXXVVIIII

4 Combine groups to obtain:
DCCCCCCLXXXXXXIIII
DCCCCCCLLXIIII
DCCCCCCCXIIII
DDCCXIIII
MCCXIIII

5 Re-Substitute any subtractives:
MCCXIV

In contrast, converting to our current number system: 369 + 845 = 1214.

MH3520-Ch.1, p.36

Machine learning design cycle

The classical machine learning design cycle consists of:

feature
selection

evaluation
& model
selection

post-
processing

feature
extraction
/ encoding

pre-
processing

supervised
learning

unsupervised
learning

reinforcement
learning

Deep learning facilitates end-to-end learning:

The individual steps are replaced by a single optimization problem.

There is far less pre-processing and no manual feature engineering
(extraction & selection).

The useful features (or data representations) are learned
automatically.

MH3520-Ch.1, p.37

Deep learning as multi-level representation learning

Deep learning can be understood as:

“representation learning methods with multiple levels of represen-
tation, obtained by composing simple but nonlinear modules that
each transform the representation at one level into a [...] higher,
slightly more abstract (one)” [LeCun et al., 2015]

[Figure from Goodfellow e.a., p. 194, 2016]

MH3520-Ch.1, p.38

Example: image representations learned by deep networks

A hierarchy of rep-
resentations, from
simple to complex,
learned in the layers
of a trained neural
network.

Image

Human Cat Dog Classes

Pixels

Edges

Contours

Object Parts

[Visualizations of network activations taken from Zeiler [2014]]

MH3520-Ch.1, p.39

Questions to answer for yourself / discuss with friends

Repetition: What is representation learning, and how does it relate to
deep learning?

Repetition: Give some examples of data representations.

Discussion: The visualization of features learned by image nets is a
non-trivial task—can you guess how it is done?

Discussion: Are deep networks always better than shallow ones?

MH3520-Ch.1, p.40

MH3520 Chapter 1

Part 6

Towards a mathematical theory of deep learning

MH3520-Ch.1, p.41

Understanding deep learning

Neural networks are excellent function approximators:

They are dense in many function spaces; this is often called the
universal approximation property [Cybenko, Hornik]

Approximation rates are known for many shallow and deep network
architectures

However, this only partially explains their success:

Generalization capability is needed in addition to approximation
capability

Deep learning performs better than the theory predicts; this is the
oft-quoted unreasonable effectiveness of deep learning in artificial
intelligence [Sejnowski]

Many interesting mathematical questions remain:

As Mathematicians, we are ideally prepared for appreciating the
abstract issues involved in high-dimensional data analysis [Donoho]

MH3520-Ch.1, p.42

Unreasonable effectiveness of deep learning

Deep learning performs way better than predicted by theory:
Although applications of deep learning networks to real-world prob-
lems have become ubiquitous, our understanding of why they are
so effective is lacking.

These empirical results should not be possible according to sam-
ple complexity in statistics and nonconvex optimization theory.
[Sejnowski 2020]

Empirically, it’s a miracle that deep learning works at all:

Generic nonconvex optimization problems with millions of variables
are impossible to solve.

Generic statistical estimation problems in a million dimensions are
impossible to solve.

MH3520-Ch.1, p.43

Abstract issues in complex learning tasks

High-dimensionality:

More and more pixels, voxels, frames per second, etc

More and more samples (not always)

Larger and larger networks.

Nonlinearity:

Nonlinear input-output relations in image recognition,
language translation, robotics, etc.

Tellingly, also in neural networks.

Randomness:

Inherent in noisy data.

Used in network initialization and training.

MH3520-Ch.1, p.44

Mathematical ideas and tools

High-dimensionality ↭ asymptotic methods:

The curse of dimensionality refers to certain quantities increasing
exponentially in the dimension (e.g. the number of points on a
regular grid).

The blessing is that asymptotic methods sometimes allow one to pass
to infinite-dimensional settings, which are easier to work with.

Nonlinearity ↭ geometry:

For instance, the input data may belong to a low-dimensional
manifold, i.e., a nice geometric space.

Neural networks with a given architecture also form a nonlinear space,
which can be described geometrically.

Randomness ↭ probability and statistics:

Statistical learning theory provides an error analysis for supervised
learning with noisy data.

Probability theory describes concentration of measure phenomena in
high dimensions or limits of infinitely wide or deep random networks.

MH3520-Ch.1, p.45

Coverage in this course

Asymptotic methods will loom large:

Neural networks shall be seen as elements of an infinite-dimensional
function space.

Approximation theory quantifies how well a given function can be
approximated by neural networks.

(Reading) Coding theory gives information-theoretic bounds on how
good the approximation can be.

Geometry and probability will appear only marginally:

Gradient descent (as e.g. in training neural networks) is a geometric
notion, but we will view it foremost in the context of numerical
optimization.

We will encounter some probabilistic methods in statistical learning
theory.

MH3520-Ch.1, p.46

Questions to answer for yourself / discuss with friends

Repetition: What mathematical theories can be used to describe and
analyze deep learning?

Discussion: Are there aspects of deep learning that are not captured
by these mathematical theories?

MH3520-Ch.1, p.47

MH3520 Chapter 1

Part 7

Classification by Machine Learning (Optional)

MH3520-Ch.1, p.48

Binary classification

We want to assign labels 0 or 1 to our observations

We start simple and use an affine function as decision boundary

w0 + w1x1 + w2x2 = 0

w =

 −31
1



This is a linear function if we declare x0 = 1

We classify as “y = 1” if w⊤x ≥ 0

This is linear regression model with basis functions {1, x1, x2},
followed by a binary classifier 1R+ .

MH3520-Ch.1, p.49

Logistic regression

Instead of a binary outcome, logistic regression yields a probabilistic
estimate of how likely a data point x belongs to class 1.

Namely, the probability that x belongs to class 1 is defined as

hw(x) := ρ(wTx).

Here, ρ is the logistic function ρ(z) = 1
1+e−z .

8 6 4 2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

We’re maximally uncertain about points on the decision boundary

E.g., wTx = 0 ⇔ hw(x) = 0.5

E.g., wTx = 5 ⇔ hw(x) = 0.993 MH3520-Ch.1, p.50

Likelihood of predicting the correct label

Logistic regression asserts that the label of x is a random variable Y
with Bernoulli distribution

pmodel(Y = 1 | x;w) = hw(x).

In supervised learning, we observe the true label (y = 0 or y = 1)
from the data.

The likelihood of observing the true label is

pmodel(Y = y | x;w) =

{
hw(x) for y = 1

1− hw(x) for y = 0

Cross-entropy loss is the negative logarithm of this likelihood:

ℓ(hw(x), y) =

{
− log(hw(x)) for y = 1

− log(1− hw(x)) for y = 0

MH3520-Ch.1, p.51

Cross-entropy loss

Likelihoods of independent events are multiplied, and logarithmic
likelihoods are added up.

Therefore, the loss for the entire dataset is the sum of the individual
losses: ∑

i

ℓ(hw(xi), yi)

Each individual loss is a convex function of w:

y = 0 : − log
(1

1 + e−z

)
y = 1 : − log

(
1− 1

1 + e−z

)
The aggregated loss is again convex and can be minimized efficiently.

Then, the resulting logistic regression model can be used to predict
the labels of yet unseen data.

MH3520-Ch.1, p.52

Example of logistic regression

Linear Transformation
z = w⊤x + w0

Logistic ActivationInput
x

Lo
gi

st
ic

 R
eg

re
ss

io
n

h(z) = 1
1 + exp(−z)

Pr
ed

ic
tio

n

h = 1
1 + exp(−z)

C
at

D
og

0.993

0.007

hw(x) = 1
1 + exp(− (w⊤x + w0)) = 1

1 + exp(− z)

= 1
1 + exp(−5) = 0.993

=
0

4.0
9.0
−2

⋅ [2.0 0.25 1.5 5] + 0.5

= 2 * 0 + 0.25 * 4 + 1.5 * 9 − 2 * 5 + 0.5
= 5

z = w⊤x + w0

x = [x1 x2 x3 x4]
= [2 0.25 1.5 5]

MH3520-Ch.1, p.53

Example of logistic regression

C
ro

ss
 E

nt
ro

py

Cost(hw(x), y) = {−log(hw(x)) for y = 1
−log(1 − hw(x)) for y = 0

C
at

D
og

0.993

0.007

Cost(hw(x), y) = − log(hw(x))
= − log(0.993)
= 0.00702

Ground Truth

C
at

D
og

C
at

D
og

1.0

Prediction

Pr
ed

ic
tio

n

h = 1
1 + exp(−z)

C
at

D
og

0.993

0.007= 1
1 + exp(−5) = 0.993

=
0

4.0
9.0
−2

⋅ [2.0 0.25 1.5 5] + 0.5

= 2 * 0 + 0.25 * 4 + 1.5 * 9 − 2 * 5 + 0.5
= 5

z = w⊤x + w0

x = [x1 x2 x3 x4]
= [2 0.25 1.5 5]

MH3520-Ch.1, p.53

The logistic regression model as a perceptron

Linear Transformation Logistic ActivationInput
x

z h

x1 w1

w2

w3

x2
x3

z = w⊤x + b

h = 1
1 + exp(−z)

Lo
gi

st
ic

 R
eg

re
ss

io
n

Pe
rc

ep
tr

on

h(z) = 1
1 + exp(−z)

b

hw(x) = 1
1 + exp(− (w⊤x + w0)) = 1

1 + exp(− z)

z = w⊤x + w0

MH3520-Ch.1, p.54

Logistic regression with multi-layer perceptrons

We now add hidden layers, which learn nonlinear features for the final
logistic regression.

Computation is performed layer-by-layer.

As before, the top layer has a logistic activation function.

The bottom layers can have other activation functions.

MH3520-Ch.1, p.55

Information flow through the multi-layer perceptron

C
la
ss

ifi
ca

tio
n

Pi
ct
ur
e

[Hutter and Boedecker]

MH3520-Ch.1, p.56

Logistic regression with multiple labels

For multi-class classification with K classes, use K output neurons.

Then, the probability of belonging to class k ∈ {1, . . . ,K} is defined
as the softmax function

pmodel(Y = k | x,w) := (ŷ1, . . . , ŷk) :=
exp(zk)∑
j exp(zj)

,

where z is the output of the perceptron with input x and
coefficients w.

Thus, the top layer has a softmax activation function, whereas the
lower layers may have other activation functions.

A suitable loss function is the categorical cross-entropy

ℓ(ŷ, y) = −
k∑

j=1

yj log ŷj ,

where ŷj are the predicted probabilities and yj are the true labels in
one-hot encoding.

MH3520-Ch.1, p.57

Question to Answer for Yourself / Discuss with Friends

Repetition: What is logistic regression, and what does it have to do
with single- or multi-layer perceptrons?

Application of what you just learned: What is the computational
complexity of computing the cross-entropy loss for d-dimensional
input, K-dimensional output, and N data points?

MH3520-Ch.1, p.58

MH3520:Mathematics of Deep Learning

Chapter 2

Basics of numerical optimization

MH3520-Ch.2, p.1

Context

Last chapter:

Deep learning is an optimization problem

E.g., given input-output pairs (x1, y1), . . . , (xn, yn), one has to
minimize

∑
i(yi − f(xi))2 over all multi-layer perceptrons f .

This chapter:

Introduction to optimization

Focus on unconstrained continuous optimization

Before we get there: recapitulation of differential calculus

Next chapter:

Application to deep learning problems.

MH3520-Ch.2, p.2

Overview of Chapter 2

1 Differential calculus

2 Mathematical optimization

3 Numerical optimization

4 Gradient flow and gradient descent (Optional)

5 Minimizers of convex objectives (optional)

6 Gradient flow and gradient descent of convex objectives (Optional)

MH3520-Ch.2, p.3

Sources for this chapter:

Lang: Foundations of Differential Geometry. Springer, 1999.

Nesterov: Introductory Lectures on Convex Optimization. Kluwwer,
2004.

Nocedal and Wright: Numerical optimization. 2nd edition. Springer,
2006.

MH3520-Ch.2, p.4

MH3520 Chapter 2

Part 1

Differential calculus

MH3520-Ch.2, p.5

Differential calculus

What is differential calculus?

Differential calculus refers to a notion of differentiability (e.g. k-fold
continuous differentiability) together with some rules on how to obtain
new differentiable functions from old ones (e.g. by composition).

The definitions and results, when written down correctly, are the same
for Euclidean spaces as for normed vector spaces.

Here, ‘correctly’ means coordinate-free.

Main message:

You can differentiate with respect to anything that belongs to a
normed space.

For the fainthearted:

If this is too abstract for you or you dislike generality, just think of
Euclidean spaces throughout.

MH3520-Ch.2, p.6

Normed vector space

Definition

A norm on a vector space E is a function ∥ · ∥ : E → [0,∞) such that for
all x, y, z ∈ E and λ ∈ R,

Non-degeneracy: ∥x∥ = 0 if and only if x = 0,

Absolute homogeneity: ∥λx∥ = |λ|∥x∥, and

Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
The tuple (E, ∥ · ∥) is called a normed vector space.

Example

For any p ∈ [1,∞), the p-norm and supremum norm on Rd are given by

∥x∥p :=
(d∑

i=1

|xi|p
)1/p

, ∥x∥∞ := max
i∈{1,...,d}

|xi|

MH3520-Ch.2, p.7

Convergence in normed spaces

Standing assumption. E, F , and G are normed vector spaces.

Definition

A sequence (xn) in E converges to a point x in E if

∀ϵ > 0 ∃N ∈ N ∀n > N : ∥xn − x∥ < ϵ.

Symbolically, this is expressed as

lim
n→∞

xn = x, or xn −−−→
n→∞

x.

Remark. Convergence can be defined more generally on any topological
space. However, the structure of a normed vector space is needed (or at
least highly useful) for differential calculus.

MH3520-Ch.2, p.8

Completeness of normed spaces

Definition

A sequence (xn) in E is called Cauchy sequence if

∀ϵ > 0 ∃N ∈ N ∀m,n > N : ∥xm − xn∥ < ϵ.

Symbolically, this is expressed as

lim
m,n→∞

xm − xn = 0, or xm − xn −−−−−→
m,n→∞

0.

Definition

A normed vector space is called complete if every Cauchy sequence therein
has a limit.

MH3520-Ch.2, p.9

Continuity in normed spaces

Definition

A function f : E → F is continuous if for any sequence (xn) in E,

xn −−−→
n→∞

x implies f(xn) −−−→
n→∞

f(x).

Remark. In a normed space, addition and scalar multiplication are
continuous.

Remark. Again, continuity can be defined more generally for functions
between topological spaces.

MH3520-Ch.2, p.10

Linear functions

Definition

L(E,F) denotes the set of continuous linear functions A : E → F with
the operator norm

∥A∥ = sup
{
∥Ax∥ : x ∈ E, ∥x∥ ≤ 1

}
.

Remark.

Linear functions with finite operator norm are called bounded, and
boundedness is equivalent to continuity.

As an aside, there are other important norms on linear operators; the
operator norm is not the only possible choice.

MH3520-Ch.2, p.11

Composition of continuous linear functions

Lemma

Composition is a continuous bilinear operation

L(E,F)× L(F,G)→ L(E,G).

Proof. Bilinearity is clear. Continuity follows from

∥AB −A′B′∥ ≤ ∥(A−A′)B∥+ ∥A′(B −B′)∥
≤ ∥A−A′∥∥B∥+ ∥A′∥∥B −B′∥.

MH3520-Ch.2, p.12

Continuous bilinear functions

Definition

L2(E,F ;G) denotes the set of continuous bilinear functions
A : E × F → G with the operator norm

∥A∥ = sup
{
∥A(x, y)∥ : x ∈ E, y ∈ F, ∥x∥ ≤ 1, ∥y∥ ≤ 1

}
.

Lemma

L2(E,F ;G) is isometrically isomorphic to L
(
E,L(F,G)

)
.

Proof. Consider (x, y) ∈ E × F as free variables. Then A(x, y) belongs to
L2(E,F ;G) if and only if A(x)(y) belongs to L(E,L(F,G)). Moreover,
the operator norms of these functions coincide.

Remark. Similar statements hold for multilinear maps.

MH3520-Ch.2, p.13

Differentiability

Definition

A function f : E → F is differentiable at a point x ∈ E if there exists a
linear function df(x) ∈ L(E,F) such that

lim
h→0

f(x+ h)− f(x)− df(x)h
∥h∥ = 0.

The derivative is denoted by df(x) = f ′(x) = ∂xf(x) =
d
dxf(x).

Remark. The remainder

Rf (x, h) := f(x+ h)− f(x)− df(x)h
tends superlinearly to zero, i.e., limh→0 ∥h∥−1Rf (x, h) = 0.

Remark. Differentiability implies continuity because

f(x+ h)− f(x) = df(x)h+Rf (x, h) −−−→
h→0

0.

MH3520-Ch.2, p.14

Derivatives as linearizations

The derivative is a linearization. The remainder (i.e., the difference
between the function and its linearization) tends superlinearly to zero

MH3520-Ch.2, p.15

Examples of differentiable functions

Example (Differentiability of linear functions)

If f ∈ L(E,F) is continuous linear, then df(x) = f for all x because

f(x+ h)− f(x)− f(h)
∥h∥ = 0 −−−→

h→0
0.

Example (Differentiability of quadratic functions)

If f(x) = A(x, x) for some A ∈ L2(E,E;F), then
df(x) = A(x, ·) +A(·, x) because

A(x+ h, x+ h)−A(x, x)−A(x, h)−A(h, x)
∥h∥ =

A(h, h)

∥h∥ −−−→
h→0

0.

MH3520-Ch.2, p.16

Chain rule

Lemma (Chain rule)

If f : E → F is differentiable at x ∈ E and g : F → G is differentiable at
y := f(x) ∈ F , then g ◦ f : E → G is differentiable at x with derivative

d(g ◦ f)(x) = dg(y) ◦ df(x).

Proof. Compute Rg◦f in terms of Rf and Rg: with k = f(x+ h)− f(x),
Rf◦g(x, h) := g(f(x+ h))− g(f(x))− dg(f(x)) df(x)h

= g(y + k)− g(y)− dg(y) df(x)h
= dg(y)k +Rg(y, k)− dg(y) df(x)h
= dg(y)Rf (x, h) +Rg(y, k).

As f is differentiable, ∥k∥ ≲ ∥h∥ for small h, and

Rf◦g(h)
∥h∥ =

dg(y)Rf (x, h)

∥h∥ +
∥k∥
∥h∥

Rg(y, k)

∥k∥ −−−→
h→0

0.

MH3520-Ch.2, p.17

Continuous and higher-order differentiability

Definition

A function f : E → F is called continuously differentiable or C1 if it is
differentiable at every point and has a continuous derivative
df : E → L(E,F).

Definition

The k-th derivative of f : E → F is defined inductively as

dkf := d(dk−1f) : E → L(E,L(E, . . . , L(E,F), . . .)) = Lk(E, . . . , E;F).

If this derivative exists and is continuous, then f is called Ck.

Remark. There is also a higher-order chain rule, which states that the
composition of Ck functions is Ck.

MH3520-Ch.2, p.18

Dual space and Riesz isomorphism

Definition

The dual space of a normed space E is the space E∗ of continuous linear
maps A : E → R with the operator norm

∥A∥ = sup
{
|A(x)| : x ∈ E, ∥x∥ ≤ 1

}
.

Theorem (Riesz)

Any Hilbert space E is isomorphic to its dual E∗ via the Riesz isomorphism

E ∋ x 7→ ⟨x, ·⟩ ∈ E∗.

Remark:
The inverse of the Riesz isomorphism is called Riesz representation.

MH3520-Ch.2, p.19

Riesz isomorphism in coordinates

On Euclidean spaces E, the Riesz isomorphism identifies column vectors
with row vectors:x1...

xn

 ∈ E ↭
(
x1, . . . , xn

)
∈ E∗

MH3520-Ch.2, p.20

Gradients

Definition

If f : E → R is differentiable at a point x in a Hilbert space E, then the
gradient ∇f(x) ∈ E is the Riesz representation of the derivative
df(x) ∈ E∗, i.e.,

⟨∇f(x), ·⟩ = df(x).

Remark. Thus, in coordinates, derivatives are row vectors, and gradients
are column vectors.

MH3520-Ch.2, p.21

Fundamental theorem of calculus

Theorem

If f : [a, b]→ E is C1, then df is integrable and

f(x) = f(a) +

∫ x

a
df(t)dt, x ∈ [a, b].

If f : [a, b]→ E is continuous and E is complete, then f is
integrable, its indefinite integral is differentiable, and

f(x) =
d

dx

∫ x

a
f(t)dt, x ∈ [a, b].

Remark. The integral can be understood in the sense of Riemann or
Lebesgue–Bochner; more on this later on.

MH3520-Ch.2, p.22

Integral bounds on differentiable curves

Corollary

If f : [a, b]→ E is C1, then

∥f(b)− f(a)∥ ≤
∫ b

a
∥ df(t)∥ dt ≤ (b− a)

∫ b

a
∥ df(t)∥2 dt.

Proof.

The first inequality is Minkowski’s inequality∥∥∥∫ b

a
g(t) dt

∥∥∥ ≤ ∫ b

a
∥g(t)∥ dt, for integrable g,

which can be seen either as a theorem about Riemann integrals or a
defining property of Lebesgue–Bochner integrals.

The second inequality is the Cauchy-Schwarz inequality or Jentzen’s
inequality.

MH3520-Ch.2, p.23

Questions to answer for yourself / discuss with friends

Repetition: What are the main definitions and results in differential
calculus?

Check your understanding: In High School we learned that the
derivative of a function f : R→ R is a real number, but here it is a
linear functional!?

Check your understanding: We have just learned that the derivative
of a function f : R→ E is a linear functional, but in the fundamental
theorem of calculus it is treated as an element of E!?

Discussion: Why is there a completeness assumption in the
fundamental theorem of calculus?

MH3520-Ch.2, p.24

MH3520 Chapter 2

Part 2

Mathematical optimization

MH3520-Ch.2, p.25

Motivation

People optimize:

Computer scientists adjust parameters of neural networks to optimize
the performance in learning tasks.

Investors seek to create portfolios that avoid excessive risk while
achieving a high rate of return.

Manufacturers aim for maximum efficiency in the design and
operation of their production processes.

Nature optimizes:

Physical and chemical systems tend to states of minimum energy.

Rays of light follow paths that minimize their travel time.

MH3520-Ch.2, p.26

Mathematical formulation

Standing assumption:

E is a normed vector space,

X is a subset of E, which is called admissible region or search domain

f : X → R is a function, which is called objective function

Optimization problem:

minimize f(x) over all x ∈ X.

Remark:

Minimization refers to finding the infimum infx f(x) and, if it exists,
also the argminx f(x).

Minimization of f is equivalent to maximization of −f .

MH3520-Ch.2, p.27

Classification of optimization problems

Variables:

Continuous versus discrete

Constrained versus unconstrained

Objective:

Convex versus non-convex

Smooth versus non-smooth

Deterministic versus stochastic

Optimization goal:

Local versus global optimization

MH3520-Ch.2, p.28

Continuous versus discrete variables

Shortest path in a graph
Discrete variables

Shortest path on a curved space
Continuous variables

MH3520-Ch.2, p.29

Constrained versus unconstrained variables

R1

R2

F
2

F
3

F
12

F
1

Optimal transport
Mass is non-negative and sums to 1

Constrained optimization

Deep learning
No restriction on network coefficients

Unconstrained optimization

MH3520-Ch.2, p.30

Convex versus non-convex objective

Convex objective Non-convex objective

MH3520-Ch.2, p.31

Smooth versus non-smooth objective

*

f

x x

Smooth objective

*

f

x x

Non-smooth objective

MH3520-Ch.2, p.32

Deterministic versus stochastic objective

x

f

Red: deterministic objective, dark: stochastic objectives

MH3520-Ch.2, p.33

Local versus global objective

2 . 1 . W H A T I S A S O L U T I O N ? 13

it from a strict local minimizer, which is the outright winner in its neighborhood.
Formally,

A point x∗ is a strict local minimizer (also called a strong local minimizer) if there is a
neighborhood N of x∗ such that f (x∗) < f (x) for all x ∈ N with x #$ x∗.

For the constant function f (x) $ 2, every point x is a weak local minimizer, while the
function f (x) $ (x − 2)4 has a strict local minimizer at x $ 2.

A slightly more exotic type of local minimizer is defined as follows.

A point x∗ is an isolated local minimizer if there is a neighborhood N of x∗ such that
x∗ is the only local minimizer in N .

Some strict local minimizers are not isolated, as illustrated by the function

f (x) $ x4 cos(1/x) + 2x4, f (0) $ 0,

which is twice continuously differentiable and has a strict local minimizer at x∗ $ 0.
However, there are strict local minimizers at many nearby points x j , and we can label these
points so that x j → 0 as j → ∞.

While strict local minimizers are not always isolated, it is true that all isolated local
minimizers are strict.

Figure 2.2 illustrates a function with many local minimizers. It is usually difficult
to find the global minimizer for such functions, because algorithms tend to be “trapped”
at local minimizers. This example is by no means pathological. In optimization problems
associated with the determination of molecular conformation, the potential function to be
minimized may have millions of local minima.

f

x

Figure 2.2 A difficult case for global minimization.
A difficult case for global minimization

Many local minima separated by steep walls

MH3520-Ch.2, p.34

Types of minima

Definition

A point x∗ ∈ X is called a. . .

Global minimum if f(x∗) ≤ f(x) for all x ∈ X
Local minimum if f(x∗) ≤ f(x) for all x sufficiently close to x∗

Strict local/global minimum if the above holds with ≤ replaced by <

Remark. Similarly for maxima.

Remark. To visualize minima, one may plot:

The graph {(x, f(x) : x ∈ X}
The level sets {x ∈ X : f(x) = ℓ} at level ℓ ∈ R

MH3520-Ch.2, p.35

Graphs and level sets

Graph of a function
Global minimum in red

Levelsets of the same function
Global minimum in red

MH3520-Ch.2, p.36

Compactness

Do minimizers even exist? This is typically guaranteed by continuity and
compactness assumptions. . .

Definition

A subset X of a normed vector space is called compact if every sequence
in X has a converging subsequence.

Example

In finite dimensions, compactness
is equivalent to boundedness and
closedness. Thus, all intervals [a, b]
and closed balls
{x ∈ Rd : ∥x∥ ≤ r} are compact,
but open or half-open intervals and
open balls are not

Non-example

In infinite-dimensional spaces E,
the closed balls {x ∈ E : ∥x∥ ≤ r}
are not compact. Existence of
minimizers is a delicate issue there.

Remark. Again, there is a more
general definition of compactness
for topological spaces.

MH3520-Ch.2, p.37

Compactness and existence of minimizers

Theorem (Weierstrass)

If f is continuous and has a compact sublevel set

{x ∈ X : f(x) ≤ c}, for some c ∈ R,

then f has a global minimum.

Proof.

Choose a minimizing sequence (xn), i.e., a sequence such that

lim
n→∞

f(xn) = inf{f(y) : y ∈ X}.

By compactness, one may replace (xn) by a converging subsequence.

The limit x := limn→∞ xn is a global minimum because

f(x) = f
(
lim
n→∞

xn
)
= lim

n→∞
f(xn) = inf{f(y) : y ∈ X}.

MH3520-Ch.2, p.38

Coercivity and existence of minimizers

Corollary

If f : Rd → R is continuous and coercive, i.e.,

lim
∥x∥→∞

f(x) =∞,

then f has compact sublevel sets, and the
Weierstrass theorem applies.

Proof.

Coercivity ‘forces’ the sublevel sets to be bounded (hence the name).

As f is continuous, the sublevel sets are closed.

In finite dimensions, this implies that they are compact.

Remark. The argument breaks down in infinite dimensions, and existence
of minimizers is a delicate issue there.

MH3520-Ch.2, p.39

Characterization of local minima

Lemma (First derivative test)

If X is an open subset of a normed space and f has a local minimum at
x ∈ X, then df(x) = 0.

Proof.

By the chain rule, the function t 7→ f(x+ th) is differentiable, for any
h ∈ E.

As x is a local minimum, the difference quotient 1
t (f(x+ th)− f(x))

is non-negative, for small t.

In the limit t→ 0, one obtains that the derivative df(x)h is
non-negative.

As this holds for h and −h, the derivative vanishes.

MH3520-Ch.2, p.40

Characterization of local minima

Lemma (Second derivative test)

If a twice differentiable function f : X → R defined on an open subset of a
Banach space E has a local minimum at x ∈ X, then d2f(x) ≥ 0.

Proof.

The Taylor expansion of t 7→ f(x+ th) for h ∈ E is

0 ≤ f(x+ th)− f(x) = t2

2
d2f(x)(h, h) +R(t), lim

t→0
|t|−2R(t) = 0.

Divide by t2 and send t→ 0 to obtain d2f(x)(h, h) ≥ 0.

Remark. Conversely, any point x with df(x) = 0 and d2f(x) > 0 is a local
minimum.

MH3520-Ch.2, p.41

From calculus to computation

Optimization problems in high-school Mathematics:

Solve for df(x) = 0 by algebraic manipulations.

Get closed-form solutions.

Obstacles in real-life problems (including deep learning):

Algebraically solving for df(x) = 0 is typically infeasible.

There are no closed-form solutions.

Numerical computation as a way out:

There are only approximate solutions.

These are typically obtained via iterative algorithms.

No single algorithm works well for all problems.

Calculus can guide algorithmic design

MH3520-Ch.2, p.42

Questions to answer for yourself / discuss with friends

Repetition: What properties ensure existence of minimizers?

Check your understanding: In finite dimensions, compactness is
equivalent to boundedness and closedness—but what does this mean
again?

Check your understanding: Write down the definition of coercivity
using existential and universal quanitifiers.

Transfer: In the classification of optimization problems, where do you
see deep learning?

MH3520-Ch.2, p.43

MH3520 Chapter 2

Part 3

Numerical optimization

MH3520-Ch.2, p.44

Numerical optimization

Context:

Mathematical optimization asks: do minimizers exist, are they unique,
are they local or global, etc.

Numerical optimization asks: how can I find these minimizers on my
computer?

Main messages:

Iteration is the single most important technique in continuous
optimization.

The simplest iteration is gradient descent, a discrete-time version of
the gradient flow.

It pays off to carefully formulate or reformulate the problem before
feeding it into an optimization algorithm.

MH3520-Ch.2, p.45

Numerical optimization pipeline

1. Creating a model:

Identifying objective, variables, and constraints

2. Optimizing the model:

Selecting an algorithm

Running the algorithm

3. Analyzing the model:

Robustness, efficiency, accuracy

Predictive power

MH3520-Ch.2, p.46

Continuous optimization

From now on, let’s focus on continuous optimization.

Standing assumption:

x ∈ E is the vector of variables in some Euclidean space E

f : E → R is the objective function

ci : E → R are constraint functions

Optimization problem:

min
x∈E

f(x) subject to
ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,

where E and I are sets of indices for equality and inequality constraints.
Luckily, most of the optimization problem in the machine learning does
not have constraint

MH3520-Ch.2, p.47

Global optimization in high dimensions is impossible

In the present generality, optimization covers almost all needs of
operations research and numerical analysis.

As real life is too complicated to believe in universal tools, you might
conjecture that optimization problems are unsolvable. Take the
following theorem as an example.

Theorem

Consider an optimization algorithm A which depends only on n point
evaluations of the objective, i.e., A(f) is a function of f(x1), . . . , f(xn)
for some points x1, . . . , xn in the search domain. If the search domain is
[0, 1]d and the algorithm has accuracy ϵ, i.e.,∣∣∣A(f)− min

x∈[0,1]d
f(x)

∣∣∣ ≤ ϵ
for every 1-Lipschitz objective function f : [0, 1]d → R, then n ≥ ⌊ 1

4ϵ⌋d.

MH3520-Ch.2, p.48

Global optimization in high dimensions is impossible (cont.)

Example

If ϵ = 0.0025 and d = 10, one needs n ≥ 1020 evaluations.

Proof.

Assume for contradiction that n < ⌊ 1
4ϵ⌋d test points are sufficient for

accuracy ϵ.

Partition [0, 1]d into disjoint small boxes of side length ⌊ 1
4ϵ⌋−1.

There are more boxes than test points. Thus, at least one of the
boxes is empty, i.e., contains no test point.

Construct a ‘bad’ objective function f , which is as negative as
possible inside the empty box and zero outside.

Then, the minimum of f is −2ϵ or lower.

As A(f) = A(0), the accuracy of A cannot be better than ϵ, a
contradiction.

MH3520-Ch.2, p.49

Iterative algorithms

Beyond global optimization:

A more modest goal is to find local minima, again up to some
accuracy.

This can be done iteratively: at each step an approximate minimizer
xn is updated by a hopefully better approximate minimizer xn+1.

Nearly all continuous optimization algorithms work like this!

The big question is what kind of updating rule to use.

MH3520-Ch.2, p.50

Intuition for gradient descent in dimension 1

Given xk, what is the best
direction to search for a point
xk+1 with f(xk+1) < f(xk)?

What is a good step size?

Idea: use increments
proportional to the gradient,

xk+1 − xk = −α∇f(xk),

for some learning rate α > 0.

slope is large, large step!

[Hutter and Boedecker]

MH3520-Ch.2, p.51

Intuition for gradient descent in higher dimensions

Lemma

The negative gradient −∇f(x) is the direction of strongest descent of f
at x, i.e., it minimizes df(x)h over all h in the unit sphere.

Proof.

By Cauchy–Schwarz,

df(x)h = ⟨∇f(x), h⟩ ≤ ∥∇f(x)∥∥h∥,

with equality iff h is a multiple of ∇f(x).
Thus, the normalized gradient h∗ = ∇f(x)∥∇f(x)∥−1 maximizes the
function df(x)h over the sphere ∥h∥ = 1.

Equivalently, −h∗ minimizes df(x)h over the same sphere.

MH3520-Ch.2, p.52

Gradient descent algorithm

A greedy algorithm for continuous unconstrained optimization:

input : function f : E → R, learning rate α > 0, initial guess x ∈ E
output: point x such that f(x) is small
repeat

x← x− α∇f(x)
until convergence
return x

Questions:

Convergence? Convergence rate?

Choice of learning rate? Time-dependent learning rate?

Refinements

MH3520-Ch.2, p.53

Convergence Results of Gradient Descent

Below we list the theorem and proof can be found in the optional parts
later this chapter.

Theorem

If f is convex with minimum at x∗, and ∇f has Lipschitz constant 1/α,
then f decreases linearly along the gradient descent with learning rate α:

f(xk)− f(x∗) ≤
2∥x0 − x∗∥2

αk
= O((αk)−1).

MH3520-Ch.2, p.54

Variations of gradient descent

There are many variations and refinements. . .

Gradient descent: the increment is the negative gradient of f at xn,
multiplied by some ‘learning rate’ α > 0

Coordinate descent: as before, but change only one variable at a time

Trust region: xn+1 is the minimizer of a linear or quadratic
approximation of f , restricted to a small ‘trusted’ region around xn

Constraints can be handled by penalization (see later) or by projection
to the admissible set

MH3520-Ch.2, p.55

Gradient descent versus coordinate descent

e
0x

x*

e2

x1

x2

3
x

1

Gradient descent

e
0x

x*

e2

x1

x2
3
x

1

Coordinate descent

MH3520-Ch.2, p.56

Trust region

Contours lines of the objective function (gray) and of a quadratic
approximation inside of circular trust region (black):

First step
Small confidence

Second step
More confidence

MH3520-Ch.2, p.57

Transformations to non-equivalent models

It can pay off to change the model before feeding it into an algorithm:

Relaxation: solve an easier problem with less constraints or more free
variables

Regularization: force x to be well-behaved by adding a penalty
function p(x) to the objective f(x)

Discretization: consider x as an n-dimensional approximation of some
infinite-dimensional x̂ and send n→∞

MH3520-Ch.2, p.58

Relaxation

R1

R2

F
2

F
3

F
12

F
1

Monge optimal transport
mass cannot split

non-convex problem

R1

R2

F
2

F
3

F
12

F
1

Kantorovich optimal transport
mass can split

convex problem

MH3520-Ch.2, p.59

Regularization

Linear equations Ax = b can be solved by optimization methods:

minx ∥Ax− b∥2

potentially ill posed
no regularization

numerically difficult

minx ∥Ax− b∥2 + ϵ∥x∥2

well posed
regularized

better conditioned

MH3520-Ch.2, p.60

Discretization

Infinite-dimensional function spaces must be discretized to make them
amenable to numerical optimization:

coarse discretization
few variables

fine discretization
many variables

MH3520-Ch.2, p.61

Transformations to equivalent models

It can pay off to reformulate the model before feeding it into an algorithm:

Transformation of objective/equality constraints/inequality
constraints by monotonic/root-preserving/positivity-preserving
transformations

Moving constraints to objective: replace constraints by penalty or
barrier functions, which are added to the objective

Variable elimination: remove an equality constraint ci(x) = 0 by
eliminating some degrees of freedom in x

Duality is about writing the objective as a supremum
f(x) = maxy ay + byx over affine functions and interchanging
minxmaxy and maxy miny.

MH3520-Ch.2, p.62

Transformation of objective and constraints

Geometric programming is a systematic way of transforming certain
polynomial problems into equivalent convex problems by logarithmic
transformations of the variables, constraints, and objectives:

minimize x−1
1 + 2x

1/3
2

subject to x1 ≤ 5x
−1/7
2

positive variables xi
non-convex problem

minimize log
(
e−y1 + 2ex2/3

)
subject to y1 ≤ log(5)− y2/7

variables yi := log xi
equivalent convex problem

MH3520-Ch.2, p.63

Moving constraints to the objective

Constrained problem:

minimize f(x) subject to ci(x) ≤ 0

Constraints replaced by penalties:

minimize f(x) +
∑
i

max{0, ci(x)}

Constraints replaced by barriers:

minimize f(x)−
∑
i

log(−ci(x))

(Alternative penalty and barrier functions are possible.)
MH3520-Ch.2, p.64

Variable elimination

Elimination techniques must be used with care as they may alter the
problem or introduce ill conditioning. Here is an example.
Constrained problem:

minimize x2 + y2

subject to (x− 1)3 = y2

Elimination of y:

minimize x2 + (x− 1)3

Forgotten implicit constraint:

subject to x ≥ 1

x +y =2 2 4

x +y =122

= (x-1)2y 3

(1,0)

y

x

MH3520-Ch.2, p.65

Duality

Lagrangian for the constrained problem:

L(x, λ, µ) = f(x) +
∑
i∈E

λici(x) +
∑
i∈I

µici(x).

Primal problem: always equivalent to the original problem

minimize
x∈Rn

maximize
λi∈R+,µi∈R

L(x, λ, µ)

Dual problem: always convex; sometimes equivalent to the original problem

maximize
λi∈R+,µi∈R

minimize
x∈Rn

L(x, λ, µ)

MH3520-Ch.2, p.66

Questions to answer for yourself / discuss with friends

Repetition: In what sense is global optimization in high dimensions
impossible?

Repetition: What is the intuition behind gradient descent, and how
does it work?

Repetition: How can optimization problems be transformed into
equivalent or related problems? Give some examples.

MH3520-Ch.2, p.67

MH3520 Chapter 2

Part 4

Gradient flow and gradient descent (Optional)

MH3520-Ch.2, p.68

Gradient flow and gradient descent

Context:

Gradient descent is a greedy optimization algorithm.

So far, we have no convergence guarantees, and we don’t even know
if it actually decreases the objective.

Continuous versus discrete time:

Gradient flow is a continuous-time version of gradient descent.

Analysis is easier in continuous time.

Numerical implementation requires discrete time.

Main messages:

Gradient flow always decreases the objective.

Gradient descent decreases the objective if the step size is small.

MH3520-Ch.2, p.69

Definitions

Standing assumption. f : E → R is a C1 function on a Hilbert space E.

Definition

The gradient flow of f (if it exists) is a C1 function x : [0,∞)→ E which
satisfies the differential equation

∂tx(t) = −∇f(x(t)), x(0) = x0.

Definition

The gradient descent of f is a sequence (xk) in E such that

xk+1 − xk = −α∇f(xk),

where the parameter α > 0 is called learning rate.

MH3520-Ch.2, p.70

Lipschitz property

Definition

A function F : E → E is Lipschitz with Lipschitz constant L > 0 if

∥F (x)− F (y)∥ ≤ L∥x− y∥ for all x, y ∈ E.

F is called locally Lipschitz if it is Lipschitz near every point in E.

Example

Every every function with bounded derivative is Lipschitz, and every C1

function is locally Lipschitz.

Application

∇f is locally Lipschitz if f is C2.

MH3520-Ch.2, p.71

Differential equations

Theorem (Picard–Lindelöf)

For any locally Lipschitz function F : E → E on a Banach space E and
any initial value x0 ∈ E, the differential equation

x′(t) = F (x(t)), x(0) = x0

has a unique solution x ∈ C1((−T, T), E) for sufficiently small T .

Sketch of proof. Rewrite the differential equation as an integral equation

x(t) = x0 +

∫ t

0
F (x(s)) ds,

show that the right-hand side is a contraction on C([−T, T], E) for small
T , and invoke the Banach fixed point theorem.

MH3520-Ch.2, p.72

Existence of the gradient flow

Theorem

The gradient flow of f is well defined if f is C2 and bounded from below.

Remark. The main point here is existence for all time.

Proof.

As ∇f is locally Lipschitz, Picard–Lindelöf ensures that the gradient
flow is well defined on [0, t) for some t.

Without loss of generality, t is maximal.

Assume for contradiction that t is finite, let tn ↗ t, and define
xn := x(tn).

Note that f(xn) is bounded because f is bounded from below and
decreases along the gradient flow, as we will see in a moment.

MH3520-Ch.2, p.73

Existence of the gradient flow (cont.)

The sequence (xn) is Cauchy because

∥xn − xm∥2 =
∥∥∥∫ tn

tm

x′(t) dt
∥∥∥2 = ∥∥∥∫ tn

tm

∇f(x(t)) dt
∥∥∥2

≤
(∫ tn

tm

∥∇f(x(t))∥ dt
)2
≤ (tn − tm)

∫ tn

tm

∥∇f(x(t))∥2 dt

= (tn − tm)

∫ tn

tm

⟨∇f(x(t)), x′(t)⟩ dt

= (tn − tm)

∫ tn

tm

∂tf(x(t)) dt

= (tn − tm)(f(xn)− f(xm)︸ ︷︷ ︸
bounded

) −−−−−→
n,m→∞

0.

By Picard–Lindelöf, the gradient flow can be restarted at limn→∞ xn,
in contradiction to the maximality of t. Thus, t cannot be finite.

MH3520-Ch.2, p.74

Decay along the gradient flow

Lemma

Any differentiable function decreases along its gradient flow.

Proof.

d(f ◦ x)(t) = df(x(t)) ◦ dx(t)
= ⟨∇f(x(t)), dx(t)⟩ = −∥∇f(x(t))∥2 < 0.

Remark. Without any further assumptions, the decay may be very slow.

MH3520-Ch.2, p.75

Decay along the gradient descent

If the learning rate is too large, the objective may increase along the
gradient descent. Let’s try to rule this out:

Lemma

If ∇f has Lipschitz constant L > 0 and the learning rate is at most 2/L,
then f decreases along its gradient descent.

Proof: auxiliary bound on the Taylor remainder of f , proof thereafter.

Remark.

The preferred choice is α = 1/L.

In applications, one rarely knows L. That’s a problem.

MH3520-Ch.2, p.76

Decay along the gradient descent (cont.)

Lemma (Bound on the Taylor remainder)

If ∇f has Lipschitz constant L, then∣∣f(y)− f(x)− ⟨∇f(x), y − x⟩∣∣ ≤ L

2
∥y − x∥2.

Proof. ∣∣f(y)− f(x)− ⟨∇f(x), y − x⟩∣∣
=
∣∣∣ ∫ 1

0
⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt

∣∣∣
≤
∫ 1

0
∥∇f(x+ t(y − x))−∇f(x)∥∥y − x∥ dt

≤
∫ 1

0
Lt∥y − x∥2 dt = L

2
∥y − x∥2.

MH3520-Ch.2, p.77

Decay along the gradient descent (cont.)

Proof.

The bound on the Taylor remainder implies the one-sided estimate

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

Setting y := x− α∇f(x) yields

f(y) ≤ f(x)− α∥∇f(x)∥2 + α2L

2
∥∇f(x)∥2

= f(x)− α(1− αL/2)∥∇f(x)∥2 ≤ f(x) if α ≤ 2/L.

MH3520-Ch.2, p.78

Questions to answer for yourself / discuss with friends

Repetition: What properties ensure that the objective decays along
the gradient flow or gradient descent?

Check your understanding: Why are we working in a Hilbert space?

Check your understanding: What does it mean to be the solution of a
differential equation?

Discussion: Can these results be used for solving optimization
problems, and if so, how?

MH3520-Ch.2, p.79

MH3520 Chapter 2

Part 5

Minimizers of convex objectives (optional)

MH3520-Ch.2, p.80

Convexity

Motivation:

Whenever an optimization problem can be solved efficiently, there
tends to be some convexity involved.

Key points:

For convex objectives, local minima are global minima

For strictly convex objectives, global minima are unique.

MH3520-Ch.2, p.81

Convexity

Definition

A convex set is a subset X of a vector space such that

[x, y]α := αx+ (1− α)y ∈ X, x, y ∈ X,α ∈ (0, 1).

A convex function is a function f with convex domain X such that

f([x, y]α) ≤ [f(x), f(y)]α, x, y ∈ X,α ∈ (0, 1).

f is strictly convex if the inequality is strict for x ̸= y.

f is uniformly convex if there exists µ > 0 such that

f([x, y]α) ≤ [f(x), f(y)]α − 1
2µα(1− α)∥x− y∥2, x, y ∈ X,α ∈ (0, 1).

MH3520-Ch.2, p.82

Convexity

convex strictly convex uniformly convex

MH3520-Ch.2, p.83

First-order characterization of convexity

Proposition

If f is continuously differentiable on an open convex subset X of a normed
vector space E, then

f is convex iff

df(x)(y − x) ≤ f(y)− f(x), x, y ∈ X.

f is strictly convex iff the inequality is strict for x ̸= y.

f is uniformly convex iff there exists µ > 0 such that

df(x)(y − x) + µ
2∥y − x∥2 ≤ f(y)− f(x).

MH3520-Ch.2, p.84

Second-order characterization of convexity

Proposition

If f is twice continuously differentiable on an open convex subset X of a
normed vector space E, then

f is convex iff

d2f(x)(h, h) ≥ 0, x ∈ X,h ∈ E.

f is strictly convex iff the inequality is strict for x ̸= y.

f is uniformly convex iff there exists µ > 0 such that

d2f(x)(h, h) ≥ µ∥h∥2.

MH3520-Ch.2, p.85

Minima of convex functions

Non-example

The strictly convex function x 7→ e−x has no
minimum.

Lemma

Any critical point of a C1 convex function is a global minimum.

Proof.

Let df(x) = 0, and let y be any other point.

As f is convex, f(y) lies above the tangent line at x, i.e.,

f(y)− f(x) ≥ df(x)(y − x) = 0.

Thus, f(x) is a global minimum.

MH3520-Ch.2, p.86

Convexity and uniqueness of minima

Counter-example

The convex function x 7→ max{0, x2 − 1} has
multiple global minima.

Lemma

Any strictly convex function has at most one local
or global minimum.

Proof.

Assume for contradiction that there are are two distinct local (and
thus global) minima x, y.

Let z be a strict convex combination of x and y.

By strict convexity, f(z) is strictly smaller than f(x) and f(y), in
contradiction to the minimality of x, y.

MH3520-Ch.2, p.87

Questions to answer for yourself / discuss with friends

Repetition: What are the definitions and some characterizations of
convexity, strict convexity, and uniform convexity?

Check your understanding: Why did we require the domain of f to be
open?

Check your understanding: Are there any non-differentiable convex
functions?

Transfer: Is deep learning a convex optimization problem? If not, is it
at least convex in some of its variables?

MH3520-Ch.2, p.88

MH3520 Chapter 2

Part 6

Gradient flow and gradient descent of convex objectives
(Optional)

MH3520-Ch.2, p.89

Gradient flow and gradient descent of convex objectives

Context:

The objective may decay arbitrarily slow along the gradient flow or
gradient descent.

Main results:

For convex objectives one gets linear decay.

For uniformly convex objectives one gets exponential decay.

Warning:

The terms linear and exponential decay are used with different
meanings in the literature.

MH3520-Ch.2, p.90

Linear decay along the gradient flow

A convex objective decreases linearly along the gradient flow:

Theorem

If f is convex and has a minimum at x∗, then f decreases linearly along
the gradient flow:

f(x(t))− f(x∗) ≤ ∥x0 − x
∗∥2

t
= O(t−1).

Proof: skipped.

Remark. The idea is to show that for some C > 0 that

d

dt

1

f(x(t))− f(x∗) ≥ C.

MH3520-Ch.2, p.91

Linear decay along the gradient descent

A convex objective decreases linearly along the gradient descent, provided
that the learning rate is sufficiently small:

Theorem

If f is convex with minimum at x∗, and ∇f has Lipschitz constant 1/α,
then f decreases linearly along the gradient descent with learning rate α:

f(xk)− f(x∗) ≤
2∥x0 − x∗∥2

αk
= O((αk)−1).

Proof: skipped.

Remark. The idea is to show for some C > 0 that

1

f(xk+1)− f(x∗)
− 1

f(xk)− f(x∗)
≥ C.

MH3520-Ch.2, p.92

The Lojasiewicz inequality

For uniformly convex functions, the optimality gap is bounded in terms of
the squared norm of the gradient:

Lemma

If f is uniformly convex with convexity constant µ, i.e.,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2∥y − x∥2,

and x∗ is a minimizer of f , then the Lojasiewicz inequality holds:

∥∇f(x)∥2 ≥ 2µ
(
f(x)− f(x∗)

)
.

Counter-example

The function f(x) = e−x is not uniformly convex,
and the Lojasiewicz inequality is not satisfied.

MH3520-Ch.2, p.93

The Lojasiewicz inequality

Proof.

We minimize both sides of the uniform-convexity inequality over y:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2∥y − x∥2.

On the LHS we get f(x∗). For the RHS, we set the derivative to zero,

∇f(x) + µ(y − x) = 0, y = x− 1

µ
∇f(x),

and compute

min
y

RHS = f(x)− 1

2µ
∥∇f(x)∥2.

As minimization maintains the inequality relation, we get

f(x∗) ≥ f(x)− 1

2µ
∥∇f(x)∥2.

MH3520-Ch.2, p.94

Exponential decay along the gradient flow

Lemma

If f satisfies the Lojasiewicz inequality for some constant µ and minimizer
x∗, then f decays exponentially along its gradient flow,

f(x(t))− f(x∗) ≤ (f(x0)− f(x∗))e−2µt = O(e−2µt).

Proof: See next slide.

Remark. The idea is to show for some C > 0 that

d

dt
log f(x(t)) ≤ −2µ.

MH3520-Ch.2, p.95

Exponential decay along the gradient flow (cont.)

Proof. Without loss of generality, f(x∗) = 0.

By the Lojasiewicz inequality,

d

dt
log f(x(t)) =

∂tf(x(t))

f(x(t))
= −∥∇f(x(t))∥

2

f(x(t))
≤ −2µ.

Integration in time yields

log f(x(t))− log f(x0) ≤ −2µt.

Exponentiation yields f(x(t)) ≤ f(x0)e−2µt.

MH3520-Ch.2, p.96

Exponential decay along gradient descent

Lemma

If f satisfies the Lojasiewicz inequality with some constant µ and
minimizer x∗, and ∇f has Lipschitz constant 1/α, then f decays
exponentially along its gradient descent with learning rate α,

f(xk)− f(x∗) ≤ (f(x0)− f(x∗))(1− αµ)k = O(e−αµk),

provided that αµ < 1.

Remark. The idea is to show that

log f(xk+1)− log f(xk) ≤ −αµ.

MH3520-Ch.2, p.97

Exponential decay along gradient descent

Proof. Without loss of generality, f(x∗) = 0.

The Lipschitz continuity of ∇f and the Lojasiewicz inequality imply

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
1

2α
∥xk+1 − xk∥2

= f(xk)−
α

2
∥∇f(xk)∥2

≤ f(xk)− αµf(xk) = f(xk)(1− αµ).

Taking the logarithm, one obtains

log f(xk+1)− log f(xk) ≤ log(1− αµ) < 0.

By recursion over k, one obtains

log f(xk) ≤ log f(x0) + k log(1− αµ),

and the result follows by exponentiation.
MH3520-Ch.2, p.98

Questions to answer for yourself / discuss with friends

Repetition: For convex or uniformly convex objectives, how fast is the
decay of the objective along the gradient flow or gradient descent?

Pronunciation: The Polish letter L is pronounced like the letter w in
water.

Discussion: How applicable are these results?

MH3520-Ch.2, p.99

MH3520:Mathematics of Deep Learning

Chapter 3

Training neural networks

MH3520-Ch.3, p.1

Context

Last chapter:

Global optimization is impossible, but local optimization can be
achieved using gradient descent.

This chapter:

How to compute gradients for training neural networks.

Some adaptations and refinements of gradient descent.

Next chapter:

Recap on probability theory, as a preparation for statistical learning
theory.

MH3520-Ch.3, p.2

Overview of Chapter 3

1 Training neural networks

2 Backpropagation

3 Loss landscape

4 Stochastic gradient descent

MH3520-Ch.3, p.3

Sources for this chapter:

Bottou, Curtis, Nocedal. Optimization methods for large scale
machine learning. SIAM Review 60:2 (2018), pp. 223–311.

MH3520-Ch.3, p.4

MH3520 Chapter 3

Part 1

Training neural networks

MH3520-Ch.3, p.5

Learning versus learning by heart

So far, we have looked at learning as the problem of minimizing the
empirical risk over all multi-layer perceptrons. The following example
suggests that this may not be what we ultimately want:

Example (Learning by heart)

Consider a function which simply memorizes the given examples,

h(x) =

{
yi if x = xi for some i ∈ {1, . . . , n},
0 (arbitrarily) otherwise.

This function is a global minimizer of the empirical risk and is easy to
compute (no optimization involved).

The reason for not using this function is that it doesn’t generalize well to
unseen data.

MH3520-Ch.3, p.6

Generalization to unseen data

To make sense of the term ‘unseen data’, let’s assume that the
training data consists of random samples from some probability
distribution P .

So far, we tried to minimize the empirical risk (aka. empirical loss)

Rn(w) :=
1

n

n∑
i=1

ℓ(hw(xi), yi).

A better goal would be to minimize the expected risk (aka. expected
loss)

R(w) := E[ℓ(hw(x), y)] :=

∫
ℓ(hw(x), y))P (dx, dy),

whose minimizer by definition generalizes well to all data.

Unfortunately, we don’t know P and therefore don’t know R.

MH3520-Ch.3, p.7

Cross-validation

We will have a detailed look at this issue in the upcoming chapter on
statistical learning theory. Here is how to deal with it practically:

Cross-validation:

A simple method for tracking out-of sample performance

Split your dataset in two parts: training data and validation data

Train your network only on training data (never on validation data!)
This amounts to empirical risk minimization.

When you are done, check the loss on the unseen validation data.

MH3520-Ch.3, p.8

Improving generalization capability

This is still more an art than a science.

Some recipes:

Use stochastic training algorithms (the main topic in this chapter).

Don’t train your network all the way, but stop early.

Regularize the problem by penalizing the size of weights, number of
non-zero weights, roughness of the function represented by the
network, etc.

Choose a sufficiently ‘small’ class of perceptrons. (With
over-parameterization, your network can still be large.)

Choose a network architecture which fits well to the data.

MH3520-Ch.3, p.9

Questions to answer for yourself / discuss with friends

Repetition: Learning is more than empirical risk minimization—can
you explain why?

Repetition: What is training and validation data, and what is it used
for?

Discussion: Is a shallow ReLu network with 1-dimensional input able
to learn by heart, i.e., to perfectly memorize n data points?

MH3520-Ch.3, p.10

MH3520 Chapter 3

Part 2

Backpropagation

MH3520-Ch.3, p.11

Backpropagation

Backpropagation

Automatically computes derivatives of multi-layer perceptrons with
respect to network parameters

Mathematically speaking, it’s just the chain rule

Algorithmically speaking, it’s a backwards pass through the network
(hence the name)

MH3520-Ch.3, p.12

Computational graph

Below is the computational graph of a multi-layer perceptron, seen as
a function of the network parameters

By the chain rule, the derivative of a composition is the composition
of the derivatives

Thus, the computational graph for the derivatives is the same as the
original computational graph1 but all maps are linear.

x0 x1 x2 x3 = y

T1 T2 T3

1Provided that the function values along the graph are known.
MH3520-Ch.3, p.13

Why not forward propagation?

In forward propagation, derivatives are computed recursively starting
from the input

This works badly if there are wide hidden layers

x0 x1 x2 x3 = y

T1 T2 T3

MH3520-Ch.3, p.14

Backward propagation

In backward propagation, derivatives are computed recursively
starting from the output

This works well if the output is low-dimensional

x0 x1 x2 x3 = y

T1 T2 T3

MH3520-Ch.3, p.15

Forward and backward pass

Overall, the computation proceeds in two passes:

Forward pass for computing function values

x0, x1, . . . , xL = y.

Backward pass for computing derivatives

∂y

∂x3
,

∂y

∂(x2, T3)
, . . . ,

∂y

∂(x1, T2, . . . , TL)
,

∂y

∂(T1, . . . , TL)
.

MH3520-Ch.3, p.16

Example with scalar parameters

Recall that composition of linear maps in L(R,R) = R corresponds to
multiplication of real numbers.

y = x3,
∂y
∂x3

= 1,

x3 = wx2,
∂y

∂(x2,w) = 1 · (w, x2) = (w, x2),

x2 = ρ(x1),
∂y

∂(x1,w) = (w · dρ(x1), x2),
x1 = ax0 + b, ∂y

∂(a,b,w) = (w · dρ(x1) · (x0, b), x2)
= (w · dρ(x1) · x0, w · dρ(x1) · b, x2).

MH3520-Ch.3, p.17

Gradient of the empirical loss

We write hw(x) as a short-hand for the multi-layer perceptron with
parameter w = (TL, . . . , T1) and input x.

The sample loss of a data point (xi, yi) is the function

fi(w) = ℓ(hw(xi), yi).

The empirical risk of a dataset (x1, y1), . . . , (xn, yn) is

Rn(w) =
1

n

n∑
i=1

fi(w).

As differentiation is linear, the batch gradient is the average of the
sample gradients,

∇Rn(w) =
1

n

n∑
i=1

∇fi(w),

and each sample gradient is computed by a forward-backward pass.
MH3520-Ch.3, p.18

Questions to answer for yourself / discuss with friends

Repetition: What is backpropagation, and how does it work
mathematically and algorithmically?

Repetition: Describe the forward and backward passes in gradient
computations.

Check your understanding: What is the difference between a
derivative, directional derivative, and partial derivative?

MH3520-Ch.3, p.19

MH3520 Chapter 3

Part 3

Loss landscape

MH3520-Ch.3, p.20

Loss landscape

Context:

Gradient descent algorithms work surprisingly well for training neural
networks.

To put things into perspective, no one would dream of using the same
simple algorithms for protein folding.

Loss landscape:

This is a poetic name for the graph of the loss function.

One would expect the landscapes for deep learning and protein folding
to be qualitatively different.

Theoretical results on this are still quite scattered, and no general
picture has emerged yet.

MH3520-Ch.3, p.21

Loss landscape for protein folding

Local minima correspond to different 3-dimensional protein folding
structures. There are many local minima.

[E. K. Peter] [T. Mohammad, S. Siddiqui, e.a.]

MH3520-Ch.3, p.22

Loss landscape for deep learning

Virtually any pattern can be found somewhere in the loss surface of a deep
network. Here, the loss is computed on the MNIST (top) or CIFAR10

(bottom) datasets.

[Skorokhodov Burtsev]

MH3520-Ch.3, p.23

Getting stuck in local minima

Unsurprisingly, with complicated objective functions, the training outcome
depends on the network initialization:

https://cs.stanford.edu/people/karpathy/convnetjs/demo/

classify2d.html
MH3520-Ch.3, p.24

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

The network architecture matters

The loss landscape heavily depends on the choice of network architecture:

Loss functions of a residual network (left), a residual network with skip
connections (center), and a dense net (right) trained on the CIFAR10

dataset.

[Li Xu e.a.]

MH3520-Ch.3, p.25

Loss function of over-parameterized networks

Theorem (Cooper)

Consider the empirical loss function of a neural network with smooth
activation function and more parameters than training data. If the loss
vanishes for some parameter configuration, then the set of global
minimizers is generically a smooth manifold.

Remark.

These smooth manifolds are higher-dimensional versions of smooth
curves or surfaces.

Their dimension is the number of network parameters minus the
number of training points.

Generically means up to an arbitrarily small change to the dataset.

MH3520-Ch.3, p.26

Manifold of global minima

Isolated global minimum Manifold of global minima

MH3520-Ch.3, p.27

Cliffs in the loss landscape of deep networks

Cliffs can occur in loss landscapes of deep and recurrent networks and
result in large gradients. (Remedy: gradient clipping)

MH3520-Ch.3, p.28

Questions to answer for yourself / discuss with friends

Repetition: What is the loss landscape of an optimization problem?

Discussion: Can you guess how the pictures of the loss landscape
might have been created? Do you think they are representative?

MH3520-Ch.3, p.29

MH3520 Chapter 3

Part 4

Stochastic gradient descent

MH3520-Ch.3, p.30

Mini-batching

Context:

Recall that the batch gradient is the average of the sample gradients.

Mini-batching:

Partition the dataset into random subsets of roughly equal size, called
mini-batches

At each step of the gradient descent, compute the gradient with
respect to a mini-batch instead of the full batch

The resulting algorithm is called stochastic gradient descent.

MH3520-Ch.3, p.31

Stochastic gradient descent

Notation:

Perceptron hw(x) with parameter w and input x

Training data (xi, yi)

Sample loss fi(w) = ℓ(hw(xi), yi)

input : learning rate α, initial guess w, batch size m
repeat

randomly choose m data points (xi, yi)
w ← w − α 1

m

∑m
i=1∇fi(w)

until convergence
return w

MH3520-Ch.3, p.32

Motivation for stochastic gradient descent

Redundancy in the data:

If there are duplicates, then a mini-batch without these duplicates
contains the same information as the full batch

Typically, there are no strict duplicates but a good deal of
approximate redundancy.

Numerical efficiency:

Mini-batch gradients are faster to compute than batch gradients

Stochastic gradient descent converges rapidly at the beginning

Randomness helps to escape local minima

Good generalization:

Suppose there were infinitely many independent mini-batches

Then stochastic gradient descent for the empirical risk is the same as
stochastic gradient descent for the expected risk

MH3520-Ch.3, p.33

Initially rapid convergence of stochastic gradient descent

0 0.5 1 1.5 2 2.5 3 3.5 4

x105

0

0.1

0.2

0.3

0.4

0.5

0.6

Accessed Data Points

Em
pi

ric
al

 R
isk

SGD

LBFGS

LBFGS is a variation of GD. [Bottou, Curtis, Nocedal]

MH3520-Ch.3, p.34

Random gradients

Standing assumption

f : E → R is a loss function on a Euclidean space E

The Lojasiewicz inequality holds for some minimizer w∗ and µ > 0:

∥∇f(w)∥2 ≥ 2µ
(
f(w)− f(w∗)

)
.

∇f has Lipschitz constant L ≥ µ
ξ, ξ1, ξ2, . . . are iid. random variables with values in some space Ξ

g : E × Ξ→ E is a function which satisfies for some M ≥ 1 that

E[g(w, ξ)] = ∇f(w), E[∥g(w, ξ)∥2] ≤M(1 + ∥∇f(w)∥2).

Remark. Think of g as a noisy version of the true gradient.

MH3520-Ch.3, p.35

Convergence of stochastic gradient descent

Theorem

The stochastic gradient descent defined by

wk+1 = wk − αg(wk, ξk), w0 ∈ E,

with α ≤ 1/(LM) satisfies

E[f(wk)− f(w∗)] ≤ αLM

2µ
+ (1− αµ)k

(
F (w0)− F (w∗)− αLM

2µ

)
Remark.

The assumptions α < 1/(LM), µ ≤ L, and M ≥ 1 imply that
0 < αµ ≤ 1, so there is exponential convergence.

In particular, the RHS tends to αLM
2µ > 0 as k →∞.

For small α, αLM
2µ is small, but (1− αµ)k converges slower.

MH3520-Ch.3, p.36

Convergence of stochastic gradient descent

Proof.

The Taylor remainder bound gives

f(wk+1) ≤ f(wk)− α⟨∇f(wk), g(wk, ξk)⟩+ 1
2α

2L∥g(wk, ξk)∥2.
Take the expectation over ξk and use the moment bound for g:

E[f(wk+1)] ≤ f(wk)− α∥∇f(wk)∥2 + 1
2α

2LM
(
1 + ∥∇f(wk)∥2

)
.

The assumption α < 1/(LM) implies that

E[f(wk+1)] ≤ f(wk)− 1
2α∥∇f(wk)∥2 + 1

2α
2LM.

Assume wlog. that f(w∗) = 0. By the Lojasiewicz inequality,

E[f(wk+1)] ≤ f(wk)− αµf(wk) +
1
2α

2LM.

Take total expectations and subtract αLM
2µ from both sides:

E[f(wk+1)− αLM
2µ] ≤ (1− αµ)E[f(wk)] +

1
2α

2LM − αLM
2µ

= (1− αµ)E[f(wk)− αLM
2µ].

MH3520-Ch.3, p.37

Variable learning rate

The previous theorem suggests to decrease the learning rate over time:

Theorem

Choose β > 1/µ and γ ≥ βLM . Then, the stochastic gradient descent
with variable learning rate αk = β/(γ + k) satisfies

E[f(wk)− f(w∗)] ≤ 1

γ + k
max

{ β2LM

2(βµ− 1)
, γ
(
f(w0)− f(w∗)

)}
.

Proof: skipped.

Remark. Only linear instead of exponential decay, but convergence to zero.

MH3520-Ch.3, p.38

Momentum, acceleration, and rescaling

In practice, several refinements of stochastic gradient descent are used,
based on the following ideas:

Momentum stabilizes the gradient (unless β is too large):

wk+1 = wk − αg(wk, ξk) + β(wk − wk−1)

Acceleration computes the gradient after adding the momentum:
[Nesterov]

w̃k = wk + β(wk − wk−1), wk+1 = w̃k − αg
(
w̃k, ξk

)
.

Rescaling aims at equal progress along each coordinate: [RMSProp]

[Rk]i = (1− λ)[Rk−1]i + λ[g(wk, ξk)]
2
i ,

[wk+1]i = [wk]i −
α√

1 + [Rk]i
[g(wk, ξk)]i.

Adaptive moment combines momentum and rescaling. [Kingma, Ba]

MH3520-Ch.3, p.39

Questions to answer for yourself / discuss with friends

Repetition: What is stochastic gradient descent, and how does it
work?

Repetition: What convergence rate can one expect for uniformly
convex loss functions?

Discussion: Momentum strategies are often described as gradient
averaging strategies. Can you see why?

Discussion: In rescaling, why would you want to preserve the norm of
activations and gradients when propagated through the network?

MH3520-Ch.3, p.40

MH3520:Mathematics of Deep Learning

Chapter 4

Basics of probability theory

MH3520-Ch.4, p.1

Context

Last chapter:

Training neural networks by stochastic gradient descent

This chapter:

What is length, area, and volume? What is an integral?

What is probability? What is a random variable?

Next chapter:

Error Bounds for Deep Learning via Statistical Learning Theory

MH3520-Ch.4, p.2

Measure and probability theory in 3 hours!?

Obviously, I will have to be selective.

The story that I will present is that any integral can be obtained as a
continuous linear extension of an elementary integral.

You only need basic topology topology for this.

MH3520-Ch.4, p.3

Overview of Chapter 4

1 Measures

2 L0 spaces and convergence in measure

3 L1 spaces and integration

4 Lp spaces, inequalities, and limit theorems

5 Probability

MH3520-Ch.4, p.4

Sources for this chapter:

Taylor: An introduction to measure and probability. Springer, 1997.

MH3520-Ch.4, p.5

MH3520 Chapter 4

Part 1

Measures

MH3520-Ch.4, p.6

Measure in classical geometry

This is how the ancient Greeks went about this:

Want to know the measure (i.e., length, area, or volume) of a
geometric body?

Partition it into small pieces, whose measures you know, and add up
their measures.

If this doesn’t work, compute upper and lower bounds using inscribed
or circumscribed bodies.

MH3520-Ch.4, p.7

Measure in analytical geometry

Geometric bodies are now seen as subsets of Rd. This spells trouble:

Theorem (Banach–Tarski paradox, 1924)

The unit ball in R3 can be disassembled into 5 pieces, which can then be
reassembled (after translating and rotating each piece) to form two
disjoint bodies of the unit ball.

Remark

Sketch of proof:
en.wikipedia.org/wiki/Banach-Tarski_paradox

Each piece is an incredibly complicated uncountable union of sets.

The take-away is that such complicated sets should be considered
non-measurable, and we’ll define a measure only for certain ‘nice’
measurable sets.

MH3520-Ch.4, p.8

en.wikipedia.org/wiki/Banach-Tarski_paradox

Countability

Definition

A set A is countable if there exists an injective function A→ N, and
uncountable otherwise.

Remark.

A countable set is either finite or countably infinite (i.e., in bijection
with the natural numbers).

The natural and rational numbers are countable, but the real numbers
are not.

Remark. Measurability will be defined axiomatically such that countable
(but not uncountable) unions are allowed; see next.

MH3520-Ch.4, p.9

Measurable spaces

Definition

A measurable space is a set Ω together with a collection F of subsets of
Ω, which are called measurable, such that

The empty set ∅ and the full set Ω are measurable, i.e.,

∅ ∈ F , Ω ∈ F .

The countable union of measurable sets is measurable, i.e.,

A1, A2, · · · ∈ F =⇒
⋃
n∈N

An ∈ F

The complement of a measurable set is measurable, i.e.,

A ∈ F =⇒ Ac := Ω \A ∈ F .

Any collection F with these three properties is called a sigma algebra.

MH3520-Ch.4, p.10

For comparison: Topological spaces

Definition

A topological space is a set Ω together with a collection O of subsets of
Ω, which are called open, such that

The empty set ∅ and the full set Ω are open, i.e.,

∅ ∈ O, Ω ∈ O.

The union of open sets is open, i.e., for any index set I,

Ai ∈ I for all i ∈ I =⇒
⋃
i∈I

Ai ∈ O.

The finite intersection of open sets is open, i.e., for any n ∈ N,

A1, . . . , An ∈ O =⇒
n⋂

i=1

Ai ∈ O.

Any collection O with these three properties is called a topology.
MH3520-Ch.4, p.11

Smallest and largest sigma algebra

Here is the smallest possible sigma algebra:

Example

The trivial sigma algebra on Ω is F = {∅,Ω}.

Here is the largest one, which is commonly used on countable sets:

Example

The discrete sigma algebra on Ω is the power set F = 2Ω = {A : A ⊆ Ω}.

Here is the one commonly used on topological spaces:

Example

The Borel sigma algebra on a topological space is the smallest sigma
algebra which contains all open sets.

MH3520-Ch.4, p.12

For comparison: Examples of topological spaces

Here is the smallest possible topology:

Example

The trivial topology on Ω is O = {∅,Ω}.

Here is the largest one, which is commonly used on countable sets:

Example

The discrete topology on Ω is the power set O = 2Ω = {A : A ⊆ Ω}.

And here is the topology of a normed or metric space:

Example

An open set in a normed or metric space is defined as a union of open
balls.

MH3520-Ch.4, p.13

Measurable functions

Definition

A function f : Ω1 → Ω2 between measurable spaces (Ω1,F1) and (Ω2,F2)
is measurable if pre-images of measurable sets are measurable, i.e.,

∀A ∈ F2 : f−1(A) ∈ F1.

Remark. In practice, it is rare to find non-measurable functions.
Nevertheless, the concept is important for ruling out Banach–Tarski style
paradoxa.

MH3520-Ch.4, p.14

For comparison: Continuous functions

Definition

A function f : Ω1 → Ω2 between topological spaces (Ω1,O1) and (Ω2,O2)
is continuous if pre-images of open sets are open, i.e.,

∀A ∈ O2 : f−1(A) ∈ O1.

Remark. This definition of continuity coincides with the usual one for
normed and metric spaces.

MH3520-Ch.4, p.15

Continuous functions are measurable

Lemma

Continuous functions are Borel measurable.

Proof.

Let f : Ω1 → Ω2 for sets Ωi with topologies Oi, where i ∈ {1, 2}.
The Borel sigma algebras are given by Fi = σ(Oi), where σ(Oi)
denotes the smallest sigma algebra containing Oi.

It follows that

f−1(F2) = f−1(σ(O2)) = σ(f−1(O2)) ⊆ σ(O1) = F1.

MH3520-Ch.4, p.16

New measurable spaces from old ones

Definition

The product of measurable spaces (Ωi,Fi) indexed by i ∈ I is the set
Ω :=

∏
i∈I Ωi endowed with the product sigma algebra

∏
i∈I Fi, i.e., the

smallest sigma algebra such that all projections pri : Ω→ Ωi are
measurable.

Remark. The product sigma algebra is the smallest sigma algebra which
contains alls sets of the form A1 ×A2 ×A3 × . . . , where Ai ∈ Fi with
Ai = Ωi for all but one i.

Definition

A subset Ω′ of Ω is a measurable space when endowed with the trace
sigma algebra, i.e., the smallest sigma algebra such that the inclusion
i : Ω′ → Ω is measurable.

Remark. The trace sigma algebra consists of the sets A ∩ Ω′ for A ∈ F .
MH3520-Ch.4, p.17

New measurable functions from old ones

Lemma

The composition f1 ◦ f2 of measurable functions is measurable.

Linear combinations λ1f1 + λ2f2 and products f1f2 of real-valued
measurable functions are measurable.

The point-wise limit limn→∞ fn of a sequence of measurable
functions fn is measurable.

The collection f = (fi)i∈I of measurable functions fi : Ω→ Ωi

indexed by a set I is a measurable function with values in the product
of measurable spaces (

∏
i∈I Ωi,

∏
i∈I Fi).

MH3520-Ch.4, p.18

Measures

Definition

A measure on a measurable space (Ω,F) is a function µ : F → [0,∞]
such that

The empty set has zero measure, i.e.,

µ(∅) = 0.

The measure is countably additive, i.e.,

µ
(⋃

n∈N
An

)
=
∑
n∈N

µ(An),

for all mutually disjoint sets A1, A2, · · · ∈ F .

The triple (Ω,F , µ) is called measure space.

Remark. Note that non-measurable sets don’t get measured.

MH3520-Ch.4, p.19

Discrete measures

Example

The Dirac measure at a point x ∈ Ω is the map

δx : F → [0,∞], δx(A) = 1A(x) =

{
1, x ∈ A,
0, x /∈ A.

Example

The counting measure on Ω is

µ :=
∑
x∈Ω

δx, µ(A) = (the number of elements of A).

Remark. Counting measures are commonly used on finite and countable
sets Ω. On uncountable sets, they serve as examples for all kind of
pathological behavior.

MH3520-Ch.4, p.20

Borel measure

Example

The Borel measure on Rd is the unique measure µ on the Borel sigma
algebra of Rd such that

µ

(
d∏

i=1

(ai, bi)

)
=

d∏
i=1

(bi − ai), for all real numbers ai ≤ bi.

Remark.

Existence and uniqueness of the Borel measure is a deep result in
measure theory, which resolves the Banach–Tarski paradox.

By not giving a proof, I’m hiding several dozens of pages on measure
extension theory.

MH3520-Ch.4, p.21

Monotonicity and continuity properties

Lemma

Let (Ω,F , µ) be a measure space, and let A1, A2, · · · ∈ F .

Monotonicity: A1 ⊆ A2 =⇒ µ(A1) ≤ µ(A2).

Continuity from below: if A1 ⊆ A2 ⊆ . . . , then

µ
(⋃

n∈N
An

)
= lim

n→∞
µ(An) = sup

n∈N
µ(An).

Continuity from above: if µ(A1) <∞ and A1 ⊇ A2 ⊇ . . . , then

µ
(⋂

n∈N
An

)
= lim

n→∞
µ(An) = inf

n∈N
µ(An)

MH3520-Ch.4, p.22

Null sets

Definition

A null set of a measure µ : F → [0,∞] is a set A ∈ F with µ(A) = 0. A
property which holds on the complement of a null set is said to hold
almost everywhere.

Example

Functions (fn) converge almost everywhere to a function f if
limn→∞ fn(x) = f(x) holds for all x in the complement of a null set.

Example

Functions f and g coincide almost everywhere if f(x) = g(x) holds for all
x in the complement of a null set.

MH3520-Ch.4, p.23

Completion

Definition

The completion of F with respect to µ is the sigma algebra

F :=
{
A ∪N : A ∈ F and N is a subset of a null set

}
.

The completion of µ is the measure µ on F defined by µ(A∪N) := µ(A).

Example

The completion of the Borel measure is called Lebesgue measure.

MH3520-Ch.4, p.24

New measures from old ones

The space of measures on a given measure space is a convex cone:

Lemma

If µ1, µ2 : F → [0,∞] are measures, then for any λ1, λ2 ∈ [0,∞), the
positive linear combination

λ1µ1 + λ2µ2 is a measure.

Remark.

This is sometimes called mixture of measures.

If one considers signed measures, then these form a linear space.

MH3520-Ch.4, p.25

New measures from old ones

Finite products of measures are measures:

Lemma

The product of two measures µ1,2 on measure spaces (Ω1,2,F1,2) is the
unique measure µ on (Ω1 × Ω2,F1 ×F2) such that

∀A1 ∈ F1,∀A2 ∈ F2 : µ(A1 ×A2) = µ1(A1)× µ2(A2).

Remark.

Existence of product measures requires measure extension theory; this
is beyond the present scope.

Infinite products of measures are well-defined only for probability
measures.

MH3520-Ch.4, p.26

New measures from old ones

The image of a measure under a measurable map is a measure:

Lemma

If (Ω1,F1) and (Ω2,F2) are measurable spaces, f : Ω1 → Ω2 is
measurable, and µ1 : F1 → [0,∞] is a measure, then

µ2 : Ω2 → [0,∞], µ2(A2) := µ1(f
−1(A2)),

is a measure, which is called the image measure of µ1 under f .

Remark.

If you think of f as a transport map, then µ2 is the mass of µ1 after
transportation by f .

A common notation for the image measure is µ2 = f∗(µ1).

MH3520-Ch.4, p.27

Questions to answer for yourself / discuss with friends

Repetition: What is a measurable space, and what are measurable
functions?

Check your understanding: If the elements of Ω are points, what are
the elements of F : points, sets of points, sets of sets of points, etc?

Discussion: Can you think of a topology that one could put on the
space of measures?

Discussion: In Riemann integrals
∫
f(x) dx, can we interpret dx as a

measure?

MH3520-Ch.4, p.28

MH3520 Chapter 4

Part 2

L0 spaces and convergence in measure

MH3520-Ch.4, p.29

Equality almost everywhere

Definition

Two measurable functions f, g defined on a measure space (Ω,F , µ) are
said to be equal almost everywhere if {x : f(x) ̸= g(x)} is a null set.

Remark.

We will identify functions which are equal almost everywhere.

Formally, we will work modulo the equivalence relation of equality
almost everywhere.

For all of our purposes, we can treat equivalence classes of functions
as functions.

MH3520-Ch.4, p.30

Measurable vector-valued functions

Standing assumption. (Ω,F , µ) is a measure space, and B is a separable
Banach space endowed with its Borel sigma algebra.

Definition

L0(Ω, B) denotes the vector space of measurable functions f : Ω→ B
modulo equivalence almost everywhere.

Remark.

For simplicity, just think of B = R.

Our goal is to endow L0(Ω, B) with a complete metric such that
addition and scalar multiplication are continuous.

Separability of B is a technical detail, which you may safely ignore,
and completeness of B will be used for completeness of L0(Ω, B).

MH3520-Ch.4, p.31

Metric space

Definition

A metric on a set S is a function d : S × S → [0,∞) such that for all
x, y, z ∈ S,

Non-degeneracy: d(x, y) = 0 if and only if x = y,

Symmetry: d(x, y) = d(y, x), and

Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

The tuple (S, d) is called metric space.

Example

For any p ∈ (0, 1), Rd is a metric space with d(x, y) :=
(∑d

i=1 |xi|p
)

.

In the following we do have a metric defined for all measurable functions,
while it is not widely used.

MH3520-Ch.4, p.32

Normed (vector) space

Definition

A norm on a (vector) space E is a function ∥ · ∥ : E → [0,∞) such that
for all x, y, z ∈ E and λ ∈ R,

Non-degeneracy: ∥x∥ = 0 if and only if x = 0,

Absolute homogeneity: ∥λx∥ = |λ|∥x∥, and

Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
The tuple (E, ∥ · ∥) is called a normed vector space.

Example

For any p ∈ [1,∞), the p-norm and supremum norm on Rd are given by

∥x∥p :=
(d∑

i=1

|xi|p
)1/p

, ∥x∥∞ := max
i∈{1,...,d}

|xi|

MH3520-Ch.4, p.33

Covering numbers and compactness

Theorem

A metric space is totally bounded if all of its covering numbers are finite,
i.e., if for every ϵ > 0, it can be covered by finitely many ϵ-balls.

Theorem

A metric space is compact if and only if it is complete and totally bounded.

Remark. In this sense, covering numbers can be seen as a quantification of
compactness.

MH3520-Ch.4, p.34

Size of a measurable function

How ‘often’ does a function take large values, say, of norm greater than r:

Definition

For any f ∈ L0(Ω, B) and r ≥ 0, we define the gauge

VfW0,r := µ
({
x ∈ Ω : ∥f(x)∥ > r

})
.

Remark.

The term gauge has no precise meaning.

V·W0,r is not a norm (hence the different notation) and not a metric,
but a variation of the triangle inequality holds:

Vf + gW0,r+s ≤ VfW0,r + VgW0,s.

MH3520-Ch.4, p.35

Size of a measurable function (cont., optional)

x

f

r VfW0,r

r

r

Left: VfW0,r measures the area (blue) where ∥f∥ > r.
Right: VfW0,r is right-continuous and decreasing in r.

MH3520-Ch.4, p.36

L0 metric on measurable functions

Theorem

L0(Ω, B) is a complete metric space with the L0 metric:

d(f, g) := Vf − gW0, VfW0 := min{1} ∪
{
r ≥ 0 : VfW0,r ≤ r

}
.

Addition and scalar multiplication are continuous w/r to this metric.

Sketch of proof.

The min exists because VfW0,r is right-continuous decreasing in r.

Vf − gW0 = 0 implies f = g almost everywhere.

The triangle inequality Vf + gW0 ≤ VfW0 + VgW0 holds. This implies
the triangle inequality for the metric and the continuity of addition.

Continuity of scalar multiplication limλ→0VλfW0 = 0 follows from the
continuity from above of µ.

The completeness proof takes around 2 pages and is skipped.

MH3520-Ch.4, p.37

Convergence in measure

Definition

Convergence in measure is convergence with respect to the L0 metric.

Lemma

(fn) converges to f in measure if and only if for all r > 0:

lim
n→∞

Vfn − fW0,r = 0.

Proof. Unroll the definition of V·W0 as follows:

For any given ϵ and sufficiently large n, Vfn − fW0 ≤ ϵ.
This implies Vfn − fW0,ϵ ≤ ϵ.
By monotonicity, this implies Vfn − fW0,r ≤ ϵ, for any r ≥ ϵ.

MH3520-Ch.4, p.38

Questions to answer for yourself / discuss with friends

Repetition: Define the space L0(Ω, B) and the L0 metric thereon.

Check your understanding: An element of L0(Ω, B) is a function, a
set of functions, a set of sets of functions, etc?

Check your understanding: What is a metric? When is a metric called
complete?

Complete the sentence: A function f is ϵ-close to a function g in
L0(Ω, B) if. . .

Discussion: If B was merely a metric space, what would L0(Ω, B) be?

MH3520-Ch.4, p.39

MH3520 Chapter 4

Part 3

L1 spaces and integration

MH3520-Ch.4, p.40

Elementary integrands

Standing assumption: (Ω,F , µ) is a measure space, and B is a separable
Banach space.

Definition

An elementary function is a measurable function f : Ω→ B with
finite range.

An elementary integrand is an elementary function f such that
µ({x : f(x) ̸= 0}) <∞.

Remark. Every elementary function is of the canonical form

f =

n∑
i=1

yi1Ai , where n ∈ N, yi ∈ B,Ai ∈ F , Ai ∩Aj = ∅,

if i ̸= j. For elementary integrands, additionally µ(Ai) <∞.

MH3520-Ch.4, p.41

Size of elementary integrands

Definition

We write L1,elem(Ω, B) for the space of elementary integrands modulo
equality almost everywhere, and we endow this space with the L1-norm

∥f∥1 =
n∑

i=1

∥yi∥µ(Ai), for any f =

n∑
i=1

yi1Ai in canonical form.

Remark.

Here, we need that elementary functions are measurable.

This is a norm because ∥f∥1 = 0 if and only if f vanishes almost
everywhere.

MH3520-Ch.4, p.42

Elementary integral

Definition

The elementary integral of an elementary integrand

f =

n∑
i=1

yi1Ai (in canonical form)

is defined as ∫
Ω
fµ :=

n∑
i=1

yiµ(Ai) ∈ B.

Remark.

Again, we need that elementary functions are measurable.

Another notation is
∫
Ω f(x)µ(dx).

MH3520-Ch.4, p.43

Continuity of the elementary integral

Lemma

The elementary integral is a continuous linear function

L1,elem(Ω, B) ∋ f 7→
∫
Ω
fµ ∈ B

with operator norm bounded by 1.

Proof. ∥∥∥∫ fµ
∥∥∥ =

∥∥∥∑
i

yiµ(Ai)
∥∥∥ ≤∑

i

∥yi∥µ(Ai) = ∥f∥1

MH3520-Ch.4, p.44

Continuous linear extension

We want to extend the elementary integral to larger classes of integrands.

Theorem

Let V be a dense subspace of a normed vector space E, and let F be a
complete normed vector space. Then, any continuous linear function
T : V → F extends uniquely to a continuous linear function T : E → F
with the same operator norm.

Sketch of proof. Set Tx := limn Txn if xn ∈ V converges to x ∈ E.

Remark.

The statement is true also for metric vector spaces or topological
vector spaces, and the metric or norm may even be degenerate.

Any continuous linear function is uniformly continuous, and the
statement holds also (potentially nonlinear) uniformly continuous
functions.

MH3520-Ch.4, p.45

Completion

Theorem

Any normed vector space E has a completion E, i.e.,

E is a complete normed vector space, and

E is densely and isometrically embedded in E.

The completion is unique up to isometry.

Sketch of proof. Define E as the set of Cauchy sequences modulo null
sequences in E.

Example

R is the completion of Q.

MH3520-Ch.4, p.46

Bochner integral

Definition

L1(Ω, B) is the completion of L1,elem(Ω, B) with respect to ∥ · ∥1.

By the theorem on continuous linear extensions, we get immediately:

Theorem

The elementary integral extends uniquely to a continuous linear function

L1(Ω, B) ∋ f 7→
∫
Ω
fµ ∈ B,

which is called Bochner integral.

Remark.

This is the most general integral you’ll encounter for a while.

The Lebesgue integral is the special case B = R.
MH3520-Ch.4, p.47

Characterization of integrands

The abstractly defined L1 space is actually a function space:

Theorem

L1(Ω, B) is continuously embedded in L0(Ω, B).

Remark.

The embedding is the continuous linear extension of the embedding

L1,elem(Ω, B)→ L0,elem(Ω, B).

The key point is that the extension is injective. (In general, it is not.)

By not giving a proof, I’m hiding a couple of pages of genuine
measure theory (mostly Fatou’s lemma).

MH3520-Ch.4, p.48

Characterization of integrands (cont.)

Corollary

f ∈ L1(Ω, B) if and only if ∥f∥ ∈ L1(Ω,R).

Proof. The map f 7→ ∥f∥ is an isometry L1,elem(Ω, B)→ L1,elem(Ω,R).
Thus, its continuous (nonlinear!) extension is also isometric.

MH3520-Ch.4, p.49

Lebesgue versus Riemann integration

x

f(x)

Riemann integration requires control over all partitions (even bad
ones), whereas Lebesgue integration requires control over some
partition (which may be chosen optimally).

Hence, Lebesgue integration is more general, but Riemann integration
provides stronger error bounds for numerically computing the integral.

MH3520-Ch.4, p.50

Questions to answer for yourself / discuss with friends

Repetition: Define the space L1(Ω, B) and the L1 norm thereon.

Check your understanding: What is the relation between the
Lebesgue integral and the Lebesgue measure?

Check your understanding: Is
∫
Ω 1Aµ equal to µ(A)?

Discussion: Can you design a numerical integrator, which takes as
input arbitrary functions f ∈ L1(Ω, B) and returns the (approximate)
integral

∫
Ω fµ?

MH3520-Ch.4, p.51

MH3520 Chapter 4

Part 4

Lp spaces, inequalities, and limit theorems

MH3520-Ch.4, p.52

Lp spaces

Standing assumption. (Ω,F , µ) is a measure space, and B is a separable
Banach space.

Definition

For any p ∈ (0,∞), Lp(Ω, B) is the set of all f ∈ L0(Ω, B) such that
∥f∥p ∈ L1(Ω,R).
L∞(Ω, B) is the set of all f ∈ L0(Ω, B) such that ∥f∥ is, up to a null
set, bounded by a constant.

Remark. If B = R, one often abbreviates Lp(Ω,R) to Lp(Ω).

MH3520-Ch.4, p.53

Size of Lp functions

Definition

For any p ∈ (0, 1), Lp(Ω, B) carries the complete metric

d(f, g) = Vf − gWp, VfWp :=

∫
Ω
∥f∥pµ.

For any p ∈ [1,∞), Lp(Ω, B) carries the complete norm

∥f∥p :=
(∫

Ω
∥f∥pµ

)1/p
.

L∞(Ω, B) carries the complete norm

∥f∥∞ := min
{
r ≥ 0 : ∥f∥ > r almost everywhere

}
.

MH3520-Ch.4, p.54

Unit spheres in Lp({0, 1}) ∼= R2

p = 1/2 p = 1 p = 3/2

p = 2 p = 3/2 p =∞
MH3520-Ch.4, p.55

Monotonicity

Lemma

For any f, g ∈ L1(Ω,R),

f ≤ g =⇒
∫
Ω
fµ ≤

∫
Ω
gµ.

MH3520-Ch.4, p.56

Minkowski’s integral inequality

In its simplest form, Minkowski’s integral inequality is:

Lemma

For any f ∈ L1(Ω, B), ∥∥∥∫
Ω
fµ
∥∥∥ ≤ ∫

Ω
∥f∥µ.

This is just the defining inequality in the construction of the integral.

MH3520-Ch.4, p.57

Chebychev’s inequality

Lemma

For any p ∈ (0,∞) and f ∈ Lp(Ω, B),

VfW0,r ≤ µ
(
{x ∈ Ω : ∥f(x)∥ ≥ r}

)
≤ 1

rp

∫
Ω
∥f∥pµ.

Remark. The special case p = 1 is called Markov’s inequality.

MH3520-Ch.4, p.58

Jensen’s inequality

Lemma

Assume that µ(Ω) = 1, and let φ : R→ R be a convex function. Then,
one has for any f ∈ L0(Ω,R) that

φ ◦ f ∈ L1(Ω,R) =⇒ f ∈ L1(Ω,R) with φ
(∫

Ω
fµ
)
≤
∫
Ω
(φ ◦ f)µ.

Remark.

Convex functions are continuous and therefore measurable.

Jensen’s inequality can be applied to finite measures by first
normalizing their total mass to µ(Ω) = 1.

MH3520-Ch.4, p.59

Embeddings of Lp spaces

Corollary

Assume that µ(Ω) <∞. Then, for any 0 ≤ p ≤ q ≤ ∞, Lq(Ω, B) is
continuously and densely embedded in Lp(Ω, B).

Proof. Normalize the measure to µ(Ω) = 1. Then, the continuity of the
embedding follows from Jensen’s inequality applied to

∫
Ω ∥f∥pµ, and the

density of the embedding follows from the density of elementary
integrands.

Careful: The embeddings are wrong for infinite measures.

MH3520-Ch.4, p.60

Cauchy-Schwarz inequality

Lemma

If B is a Hilbert space, then L2(Ω, B) is a Hilbert space, and the
Cauchy-Schwarz inequality holds:

⟨f, g⟩2 :=
∫
Ω
⟨f, g⟩µ ≤

√∫
Ω
∥f∥2µ

√∫
Ω
∥g∥2µ =: ∥f∥2∥g∥2.

MH3520-Ch.4, p.61

Hölder’s inequality

Lemma

Let p, q, r ∈ [1,∞] be Hölder conjugates, i.e., 1
p + 1

q = 1
r . Then, the

product of any f ∈ Lp(Ω,R) and g ∈ Lq(Ω,R) belongs to Lr(Ω,R), and

∥fg∥r ≤ ∥f∥p∥g∥q.

Remark.

This extends to p, q, r ∈ (0,∞] if µ is finite (or sigma-finite).

For p = q = 2 one gets the the Cauchy–Schwarz inequality in
L2(Ω,R).

MH3520-Ch.4, p.62

Monotone convergence

Theorem

Let (fn) be a monotonically increasing sequence of real-valued measurable
functions, which converges almost everywhere to a function f ∈ L1(Ω,R).
Then, (fn) converges to f in L1(Ω,R).

Remark. By the continuity of the integral, this implies

lim
n→∞

∫
Ω
fnµ =

∫
Ω
fµ.

Remark. There is no such theorem for Riemann integrals.

MH3520-Ch.4, p.63

Dominated convergence

Theorem

Let (fn) be a sequence in L1(Ω, E) which converges almost everywhere to
f ∈ L1(Ω, E). Assume that some g ∈ L1(Ω,R) dominates all fn, i.e.,

∀n ∈ N : ∥fn(x)∥ ≤ g(x) for almost every x ∈ Ω.

Then (fn) converges to f in L1(Ω, E).

Remark. By the continuity of the integral, this implies

lim
n→∞

∫
Ω
fnµ =

∫
Ω
fµ.

Remark. There is no such theorem for Riemann integrals.

MH3520-Ch.4, p.64

Questions to answer for yourself / discuss with friends

Repetition: Define the space Lp(Ω, B) and the Lp norm (or metric)
thereon.

Repetition: The dominated convergence theorem is among the most
important properties of the Lebesgue integral. What does it say?

Discussion: Some of the previous results use the normed structure
and some others the ordered structure of R—which ones?

Discussion: Can you now make sense of the integral in the
fundamental theorem of calculus:

∀f ∈ C1([a, b], B) : f(b)− f(a) =
∫ b

a
df(x) dx.

MH3520-Ch.4, p.65

MH3520 Chapter 4

Part 5

Probability

MH3520-Ch.4, p.66

Axioms of probability

Definition

A probability space is a measure space (Ω,F ,P) with a probability
measure P, i.e., a measure of total mass P(Ω) = 1.

An event is an element of the sigma algebra F .

A random variable is a measurable function on Ω.

Remark.

This axiomatization of probability is due to A. Kolmogorov (1933).

As an aside, the axiomatization of causality is due to J. Pearl (2000).

All of this is quite recent!

Standing assumption. (Ω,F ,P) is a probability space, on which all
random variables are defined unless specified otherwise. Moreover, (B,B),
(B1,B1), etc. are a measurable spaces.

MH3520-Ch.4, p.67

Terminology

Measure theory Probability theory

measure probability
measurable set event

measurable function random variable
image measure distribution of the r.v.

almost everywhere almost surely
convergence a.e. convergence a.s.

convergence in measure convergence in probability
integral mean, expectation
L1-norm first moment
L2-norm second moment

MH3520-Ch.4, p.68

Distributions

Typically, one does not specify the probability space, but merely the (joint)
distribution of all random variables of interest:

Definition

The distribution of a random variable X : Ω→ B is the image
measure X∗P, i.e., the unique probability measure P : B → [0,∞]
such that P (A) = P(X−1(A)).

The joint distribution of a family of random variables Xi : Ω→ Bi is
the distribution of X : Ω→∏

iBi.

The marginal distributions of a family of random variables Xi is the
the family of distributions of Xi.

Remark. For any specified distribution P on (B,B), one may construct a
probability space (Ω,F ,P) and a random variable X : Ω→ B with the
distribution P . (Hint: let X be the identity map on Ω := B.)

MH3520-Ch.4, p.69

Densities

To specify a distribution P , one often starts from a measure µ (e.g. the
counting measure on a countable set or the Borel measure on Euclidean
space) and multiplies it with a density f :

Theorem

Let (B,B, µ) be a measure space. Then, any non-negative f ∈ L1(B,R)
with ∥f∥1 = 1 defines a probability measure P := fµ as follows:

P : B → [0,∞), P (A) :=

∫
B
1Afµ ∈ [0,∞).

f is called the Radon–Nikodym density of P with respect to µ.

Proof: next slide.

MH3520-Ch.4, p.70

Densities (cont.)

Proof. For any mutually disjoint sets A1, A2, · · · ∈ B, by the dominated
convergence theorem,

∞∑
i=1

P (Ai) = lim
n→∞

n∑
i=1

∫
B
1Aifµ = lim

n→∞

∫
B

n∑
i=1

1Aifµ

=

∫
B

lim
n→∞

n∑
i=1

1Aifµ =

∫
B
1
⋃

i Ai
fµ = P

(⋃
i

Ai

)
.

MH3520-Ch.4, p.71

Examples of discrete probability measures

Bernoulli distribution

B = {0, 1}, B is the discrete sigma algebra, µ is the counting measure,
and P = fµ with f(1) = p and f(0) = 1− p for some p ∈ [0, 1].

Binomial distribution

B = {0, . . . , n}, B is the discrete sigma algebra, µ is the counting
measure, and P = fµ with f(k) =

(
n
k

)
pk(1− p)n−k for some p ∈ [0, 1].

Uniform distribution

B = {1, . . . , n}, B is the discrete sigma algebra, µ is the counting
measure, and P = 1

nµ.

MH3520-Ch.4, p.72

Examples of continuous probability measures

Normal distribution

B = R, B is the Borel sigma algebra, µ is the Borel measure, and P = fµ
with f(x) = (2πσ2)−1/2e−

1
2
(x−µ)2/σ2

for some µ ∈ R and σ ∈ (0,∞).

Multi-variate normal distribution

B = Rd, B is the Borel sigma algebra, µ is the Borel measure, and
P = fµ with f(x) = (det 2πΣ)−1/2e−

1
2
(x−µ)⊤Σ−1(x−µ) for some µ ∈ Rd

and positive definite symmetric Σ ∈ Rd×d.

Uniform distribution

B = [0, 1], B is the Borel sigma algebra, and P is the Borel measure
restricted2 to [0, 1].

2If A is Borel-measurable in [0, 1], then A is Borel-measurable in R.
MH3520-Ch.4, p.73

Sigma algebras generated by random variables

Sigma algebras encode information contained in random variables:

Definition

The sigma algebra generated by a random variable X : Ω→ B is

σ(X) := X−1(B) :=
{
X−1(A) : A ∈ B

}
.

Remark. As X was assumed to be measurable, σ(X) is contained in F .

Lemma

A random variable Y is measurable with respect to the sigma algebra
generated by X if and only if Y = f ◦X for some measurable function f .

MH3520-Ch.4, p.74

Independence

Definition

Two events A1, A2 ∈ F are independent if P [A1∩A2] = P [A1]P [A2].

Two sigma algebras F1,F2 are independent if any events A1 ∈ F1

and A2 ∈ F2 are independent.

Two random variables X1,2 : Ω→ B1,2 are independent if their
generated sigma algebras σ(X1,2) = X−1

1,2 (B1,2) are independent.

Lemma

Random variables X1 and X2 as above are independent if and only if their
joint distribution is a product measure on B1 ×B2.

MH3520-Ch.4, p.75

Product measures

To specify the distribution of independent random variables, one has to
construct products of probability measures. This is always possible:

Lemma

The product of probability measures Pi on (Bi,Bi), indexed by a set I, is
the unique probability measure P on (

∏
i∈I Bi,

∏
i∈I Bi) such that

P
(∏

i∈I
Ai

)
=
∏
i∈I

P (Ai),

where Ai ∈ Bi is equal to all of Bi for all but finitely many i ∈ I.

Remark: For general measures (with total mass different from 1), infinite
products may fail to exist.

MH3520-Ch.4, p.76

Moments

Standing assumption. From now on, let B be a separable Banach space.

Definition

The first moment of X ∈ L1(Ω, B) is ∥X∥1.

The second moment of X ∈ L2(Ω, B) is ∥X∥2.

More generally, for any p ∈ [1,∞), the p-th moment of
X ∈ Lp(Ω, B) is ∥X∥p.

MH3520-Ch.4, p.77

Mean, variance, and covariance

Definition

The mean or expectation of X ∈ L1(Ω, B) is E[X] :=
∫
ΩXP ∈ B.

The covariance of X,Y ∈ L2(Ω, B) is the linear operator

Cov[X,Y] : B∗ → B, Cov[X,Y](α) = E
[
α(X−E[X])(Y −E[Y])

]
.

The variance of X ∈ L2(Ω, B) is Cov[X,X].

Remark.

The square brackets [·] have no special meaning.

The notation E is bad when there is more than one measure around.

The variance and covariance are operators (think: matrices), but for
scalar random variables, they are just numbers.

MH3520-Ch.4, p.78

Conditional expectation

Definition

Let X ∈ L1(Ω, B), and let G be a sigma algebra contained in F .

The conditional expectation of X given G is the unique G-measurable
random variable E[X|G] ∈ L1(Ω, B) satisfying

∀A ∈ G : E[1AE[X|G]] = E[1AX].

Similarly, for any random variable Y , E[X|Y] is defined as
E[X|σ(Y)], where σ(Y) is the sigma algebra generated by Y .

Remark.

The conditional expectation a linear contraction on L1(Ω, B). If B is
a Hilbert space, then it is an orthogonal projection on L2(Ω, B).

E[X|Y] is σ(Y)-measurable and thus a function of Y .

MH3520-Ch.4, p.79

Computing expectations via distributions

Lemma

Let X : Ω→ B be a random variable with distribution P = X∗P, and let
f : B → C be a measurable function with values in a separable Banach
space C. Then f ◦X is P-integrable if and only if f is P -integrable, and∫

Ω
(f ◦X)P =

∫
B
f P.

Remark. Both integrals are expectations (with respect to P and P , resp.)

Proof.

For indicator functions f , this is the defining property of the image
measure.

For elementary integrands f , this follows by linearity.

For P -integrable integrands f , this follows by approximation.

MH3520-Ch.4, p.80

Questions to answer for yourself / discuss with friends

Repetition: State Kolmogorov’s axioms of probability.

Repetition: What is the relation between expectation and integral?

Check your understanding: Is the expectation of a random variable a
random variable? What about the conditional expectation?

Transfer: If the data points in supervised learning are independent,
are the steps of the gradient descent independent?

MH3520-Ch.4, p.81

MH3520:Mathematics of Deep Learning

Chapter 5

Statistical learning theory

MH3520-Ch.5, p.1

Context

Last chapter:

Introduction to probability theory

This chapter:

Error bounds for general learning algorithms

As a special case, error bounds for training neural networks

Next chapter:

Universality of neural networks

MH3520-Ch.5, p.2

Overview of Chapter 5

1 Introduction to statistical learning

2 Empirical risk minimization and related algorithms

3 Error decompositions

4 Error trade-offs (optional)

5 Error bounds

6 Concentration inequalities

7 Bounds on the uniform generalization error

MH3520-Ch.5, p.3

Sources for this chapter:

Cucker, Smale (2002): On the mathematical foundations of learning.
Bulletin of the American mathematical society 39.1: pp. 1–49.

Cucker and Zhou (2007): Learning theory—An approximation theory
viewpoint. Vol. 24. Cambridge University Press.

MH3520-Ch.5, p.4

MH3520 Chapter 5

Part 1

Introduction to statistical learning

MH3520-Ch.5, p.5

Learning

Learning or, more precisely, inductive inference:

Observe a phenomenon

Construct a model of that phenomenon

Make predictions using this model

Of course, this definition is very general and could be taken more or less as
the goal of all natural sciences. . .

MH3520-Ch.5, p.6

Learning theory versus machine learning

Goals of learning theory versus machine learning:

Machine learning: automize inference

Statistical learning theory: formalize inference

Nothing is more practical than a good theory. [Vapnik]

MH3520-Ch.5, p.7

Statistical learning theory

Main assumption of statistical learning theory:

Test and training data are independent and identically distributed.

This distinguishes it from time series analysis (not independent) and
transfer learning (not the same distribution).

Definition

Transfer learning (TL) is a technique in machine learning in which
knowledge learned from a task is re-used in order to boost performance on
a related task. For example, for image classification, knowledge gained
while learning to recognize cars could be applied when trying to recognize
trucks.

MH3520-Ch.5, p.8

Formalization

Input and output spaces: measurable spaces X and Y.

Loss function: a measurable function ℓ : Y × Y → R.

Hypothesis class (aka. model class): a set H of measurable functions
h : X → Y.

Observations: independent random variables (X1, Y1), . . . , (Xn, Yn),
defined on a probability space (Ω,F ,P), distributed according to a
probability measure P on X × Y.

Objective: Find a function h ∈ H with low or minimal risk (aka. test
or generalization risk)

R(h) :=

∫
ℓ(h(x), y)P (dx, dy)

in the situation where P is unknown and the only information is
contained in the observations.

MH3520-Ch.5, p.9

Remarks

Applications:

Regression: Y = R and ℓ(y1, y2) = (y1 − y2)2.

Classification: Y = {0, 1} and ℓ(y1, y2) = 1{y1 ̸=y2}.

Useful hypothesis classes:

Linear functions, polynomials, Ck functions, splines, or, as in deep
learning, multilayer perceptrons.

Main challenge:

The distribution P of the data and consequently also the risk
functional R, which is to be minimized, are unknown.

Otherwise this would be a standard optimization problem.

MH3520-Ch.5, p.10

Questions to answer for yourself / discuss with friends

Repetition: Describe the setup and goal of statistical learning theory.

Check your understanding: What is the difference between P and P ,
and similarly between E and E?

MH3520-Ch.5, p.11

MH3520 Chapter 5

Part 2

Empirical risk minimization and related algorithms

MH3520-Ch.5, p.12

Risk versus empirical risk

Risk: Recall that. . .

The objective in statistical learning theory is to minimize the risk

R(h) :=

∫
ℓ(h(x), y)P (dx, dy)

over all h in the hypothesis class H.

The problem is that the distribution P of the data is unknown.

Empirical risk:

As a substitute, define the empirical risk

Rn(h) :=
1

n

n∑
i=1

ℓ(h(Xi), Yi) =

∫
ℓ(h(x), y)Pn(dx, dy),

where Pn := 1
n

∑n
i=1 δ(Xi,Yi) is the empirical measure.

MH3520-Ch.5, p.13

Algorithms

Empirical risk minimization (aka. supervised learning):

hn ∈ argmin
h∈H

Rn(h).

Structural risk minimization:

hn ∈ argmin
k∈N
h∈Hk

Rn(h) + p(k, n),

for some increasing sequence (Hk)k∈N of hypothesis classes and a penalty
p(k, n) for the size or capacity of the class.

Regularization:
hn ∈ argmin

h∈H
Rn(h) + ∥h∥2,

for some suitable norm ∥ · ∥ (or some other form of penalty).

MH3520-Ch.5, p.14

Algorithms (cont.)

Maximum likelihood:

hn ∈ argmax
h∈H

e−Rn(h)p(h) = argmin
h∈H

Rn(h)− log p(h),

where p : H → R+ is a probability density with respect to some reference
measure µ on H.

Posterior mean:

hn =
1

Zn

∫
H
he−Rn(h)p(h)µ(dh),

where Zn :=
∫
H e

−Rn(h)p(h)µ(dh) is a normalizing factor.

Gibbs sampling:

hn ∼
1

Zn
e−Rnpµ.

MH3520-Ch.5, p.15

Questions to answer for yourself / discuss with friends

Repetition: What is the empirical measure, and what is empirical risk
minimization?

Repetition: How is it related to regularization and maximum
likelihood estimation?

Transfer: What optimization algorithms could be used to solve the
empirical risk minimization problem?

Transfer: Based on your knowledge in statistics, how fast do you
expect the empirical risk Rn(h) to converge to R(h), for fixed h ∈ H?

MH3520-Ch.5, p.16

MH3520 Chapter 5

Part 3

Error decompositions

MH3520-Ch.5, p.17

Error decompositions

Standing assumption: E and E denote expectations w/r to P and P ,
respectively, and:

f∗ solves R(f∗) = inff : X→Y R(f),

h∗ solves R(h∗) = infh∈HR(h), and

hn is an H-valued random variable.

H

risk

R

f∗ h∗ hn

Rn

MH3520-Ch.5, p.18

Three error decompositions

Approximation and estimation error:

R(hn) = R(f∗)︸ ︷︷ ︸
statistical risk

+
(
R(h∗)−R(f∗)

)︸ ︷︷ ︸
approximation error

+
(
R(hn)−R(h∗)

)︸ ︷︷ ︸
estimation error

Empirical risk and generalization error:

R(hn) = Rn(hn)︸ ︷︷ ︸
empirical risk

+
(
R(hn)−Rn(hn)

)︸ ︷︷ ︸
generalization error

Bias and variance: for Y = R and ℓ(y1, y2) = (y1 − y2)2,

E[R(hn)] = R(f∗)︸ ︷︷ ︸
statistical risk

+ E
[
E[hn(x)− f∗(x)]2︸ ︷︷ ︸

squared bias

+ Var[hn(x)]︸ ︷︷ ︸
variance

]

MH3520-Ch.5, p.19

Approximation and estimation error

Approximation and estimation error:

R(hn) = R(f∗)︸ ︷︷ ︸
statistical risk

+
(
R(h∗)−R(f∗)

)︸ ︷︷ ︸
approximation error

+
(
R(hn)−R(h∗)

)︸ ︷︷ ︸
estimation error

H

risk

R

f∗ h∗ hn

Rn

statistical
risk

approximation
error

estimation
error

MH3520-Ch.5, p.20

Empirical risk and generalization error

Empirical risk and generalization error:

R(hn) = Rn(hn)︸ ︷︷ ︸
empirical risk

+
(
R(hn)−Rn(hn)

)︸ ︷︷ ︸
generalization error

H

risk

R

f∗ h∗ hn

Rn

empirical
risk

generalization
error

MH3520-Ch.5, p.21

Bias and variance

Bias and variance: for Y = R and ℓ(y1, y2) = (y1 − y2)2,

E[R(hn)] = R(f∗)︸ ︷︷ ︸
statistical risk

+ E
[
E[hn(x)− f∗(x)]2︸ ︷︷ ︸

squared bias

+ Var[hn(x)]︸ ︷︷ ︸
variance

]

H

risk

R

f∗ h∗ hn

Rn

statistical
risk

squared bias
plus variance

MH3520-Ch.5, p.22

Proof of the bias-variance decomposition

Recall:

R(f∗) := inff : X→Y R(f).

Y = R, ℓ(y1, y2) = (y1 − y2)2.

Mean-square optimality of the mean: f∗(x) = E[y | x].
Conditional risk of hn given (x, ω):

E[(hn(x)− y)2 | x] = Var[hn(x)− y | x] + E[hn(x)− y | x]2

= E[(f∗(x)− y)2 | x] + (hn(x)− f∗(x))2.

Expected risk of hn: applying E and E on both sides yields

E[R(hn)] = R(f∗) + E
[
E[(hn(x)− f∗(x))2]

]
= R(f∗) + E

[
E[hn(x)− f∗(x)]2︸ ︷︷ ︸

squared bias

+Var[hn(x)]︸ ︷︷ ︸
variance

]
.

MH3520-Ch.5, p.23

Questions to answer for yourself / discuss with friends

Repetition: Define the approximation, estimation, and generalization
errors.

Discussion: We haven’t talked about the optimization error yet.
Intuitively, that’s the error which is due to imperfections of the
numerical optimizer. How would you define it?

MH3520-Ch.5, p.24

MH3520 Chapter 5

Part 4

Error trade-offs (optional)

MH3520-Ch.5, p.25

Error trade-offs

Decompositions versus trade-offs

A trade-off occurs when one term in an error decomposition increases
while another term decreases with respect to a parameter.

Trade-offs in the choice of hypothesis class?

In general, there is no trade-off in the above error decompositions
with respect to H.

However, there may be trade-offs with respect to H in some upper
bounds for the error (as opposed to the error itself).

Example: bias-variance decomposition

Conventional wisdom: The price to pay for achieving low bias is high
variance—a trade-off in the choice of H. [Geman et al. 1992].

However, this is false in over-parameterized regimes, which are
common in modern machine learning applications (see next slide).

MH3520-Ch.5, p.26

Example: bias-variance decomposition

Traditional view of the bias-variance trade-off (left). Lack of any trade-off
in MNIST character recognition using sufficiently wide ReLu networks
(right).

Figure 5.1. On the left is an illustration of the common intuition for the bias-variance
tradeo� (Fortmann-Roe, 2012). We find that both bias and variance decrease when we
increase network width on MNIST (right) and other datasets (Section 5.4). These results
seem to contradict the traditional intuition of a strict tradeo�.

A number of di�erent research directions have spawned in response to these findings.
Neyshabur et al. (2015) hypothesize the existence of an implicit regularization mechanism.
Some study the role that optimization plays (Soudry et al., 2018; Gunasekar et al., 2018).
Others suggest new measures of capacity (Liang et al., 2017; Neyshabur et al., 2019). All
approaches focus on test error, rather than studying bias and variance directly (Neyshabur
et al., 2019; Geiger et al., 2019a; Liang et al., 2017; Belkin et al., 2019a).

Test error analysis does not give a definitive answer on the lack of a bias-variance tradeo�.
Consider boosting: it is known that its test error often decreases with the number of rounds
(Schapire & Singer, 1999, Figures 8-10). In spite of this monotonicity in test error, Bühlmann
& Yu (2003) show that variance grows at an exponentially decaying rate, calling this an
“exponential bias-variance tradeo�” (see Section 4.3). To study the bias-variance tradeo�,
one has to isolate and measure bias and variance individually. To the best of our knowledge,
there has not been published work reporting such measurements on neural networks since
Geman et al. (1992).

We go back to basics and study bias and variance. We start by taking a closer look at
Geman et al. (1992, Figure 16 and Figure 8 (top))’s experiments with neural networks. We
notice that their experiments do not support their claim that “bias falls and variance increases
with the number of hidden units.” The authors attribute this inconsistency to convergence
issues and maintain their claim that the bias-variance tradeo� is universal. Motivated by this
inconsistency, we perform a set of bias-variance experiments with modern neural networks.

We measure prediction bias and variance of fully connected neural networks. These
measurements allow us to reason directly about whether there exists a tradeo� with respect
to network width. We find evidence that both bias and variance can decrease at the same

23

Figure 5.1. On the left is an illustration of the common intuition for the bias-variance
tradeo� (Fortmann-Roe, 2012). We find that both bias and variance decrease when we
increase network width on MNIST (right) and other datasets (Section 5.4). These results
seem to contradict the traditional intuition of a strict tradeo�.

A number of di�erent research directions have spawned in response to these findings.
Neyshabur et al. (2015) hypothesize the existence of an implicit regularization mechanism.
Some study the role that optimization plays (Soudry et al., 2018; Gunasekar et al., 2018).
Others suggest new measures of capacity (Liang et al., 2017; Neyshabur et al., 2019). All
approaches focus on test error, rather than studying bias and variance directly (Neyshabur
et al., 2019; Geiger et al., 2019a; Liang et al., 2017; Belkin et al., 2019a).

Test error analysis does not give a definitive answer on the lack of a bias-variance tradeo�.
Consider boosting: it is known that its test error often decreases with the number of rounds
(Schapire & Singer, 1999, Figures 8-10). In spite of this monotonicity in test error, Bühlmann
& Yu (2003) show that variance grows at an exponentially decaying rate, calling this an
“exponential bias-variance tradeo�” (see Section 4.3). To study the bias-variance tradeo�,
one has to isolate and measure bias and variance individually. To the best of our knowledge,
there has not been published work reporting such measurements on neural networks since
Geman et al. (1992).

We go back to basics and study bias and variance. We start by taking a closer look at
Geman et al. (1992, Figure 16 and Figure 8 (top))’s experiments with neural networks. We
notice that their experiments do not support their claim that “bias falls and variance increases
with the number of hidden units.” The authors attribute this inconsistency to convergence
issues and maintain their claim that the bias-variance tradeo� is universal. Motivated by this
inconsistency, we perform a set of bias-variance experiments with modern neural networks.

We measure prediction bias and variance of fully connected neural networks. These
measurements allow us to reason directly about whether there exists a tradeo� with respect
to network width. We find evidence that both bias and variance can decrease at the same

23

[Figures from Neal 2019]

MH3520-Ch.5, p.27

Example: bias-variance decomposition (cont.)

Conjectured reconciliation: U-shaped risk curve in the underparameterized
regime and decreasing risk in the overparameterized regime

R
is

k

Training risk

Test risk

Capacity of H
sweet spot

under-fitting over-fitting

R
is

k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

(a) (b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o�. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the

3

Figure 4.4. Double descent curve, showing U-shaped risk curve in under-parameterized
regime and decreasing curve in over-parameterized regime (Belkin et al., 2019a).

regime; and there is a sharp transition from the under-parameterized regime to the over-
parameterized regime where the training error is 0. Belkin et al. (2019a) illustrate this in
Figure 4.4.

In previous work, Advani & Saxe (2017) observed this phenomenon in linear student-
teacher 1 networks and with nonlinear networks on MNIST. In concurrent (to Chapter 5)
work, Spigler et al. (2018); Geiger et al. (2019b); Belkin et al. (2019a) also studied this
phenomenon. Spigler et al. (2018); Geiger et al. (2019b) described the cusp in the double
descent curve as corresponding to a phase transition and draw the analogy to the “jamming
transition” in particle systems. Belkin et al. (2019a) conjectured that this phenomenon is
fairly general (as opposed to just being restricted to neural networks). Belkin et al. (2019a)
showed the phenomenon in random forests, in addition to neural networks, and coined the
term “double descent.” Nakkiran et al. (2019) recently showed that this double descent
phenomenon is present in many state-of-the-art architectures such as convolutional neural
networks, ResNets, and transformers, as opposed to only being present in more toy settings.
The double descent phenomenon in simple settings such as shallow linear models can be seen
in work that dates as far back as 1995 (Opper, 1995, 2001; Bös & Opper, 1997).

Our work in Chapter 5 is consistent with the double descent curve. Although we were
not looking for the cusp in the double descent curve (can require dense sampling of model
sizes and specific experimental details), we do seem to see it in several variance figures in
Chapter 5. All the works on the double descent curve examine the risk (or test error). In order
to test the bias-variance hypothesis, it is important to actually measures bias and variance
because test error and bias can decrease while variance still increases at an exponentially
decaying rate (Section 4.3).

1. “Teacher” here refers to the fact that the data is generated by a neural network.

18

[Figure from Belkin e.a. 2019]

MH3520-Ch.5, p.28

Questions to answer for yourself / discuss with friends

Repetition: What’s the difference between an error decomposition
and an error trade-off?

Check your understanding: What is model complexity versus number
of hidden units?

Check your understanding: What is being referred to by the
under-parameterized, interpolating, and over-parameterized regimes?

Discussion: Can you think of a reason (or an example) why the
variance might be decreasing in over-parameterized regimes?

MH3520-Ch.5, p.29

MH3520 Chapter 5

Part 5

Error bounds

MH3520-Ch.5, p.30

Bounding the approximation error

Notation:

f∗ solves R(f∗) = inff : X→Y R(f), and

h∗ solves R(h∗) = infh∈HR(h).

hn is a random element in H.

Approximation error: R(h∗)−R(f∗)
Decreases when H increases.

Depends on how closely f∗ can be approximated by functions in H.

Is the main focus of function approximation theory.

Bound for quadratic loss functions: using E[y | x] = f∗(x),

0 ≤ R(h∗)−R(f∗) = E
[
(h∗(x)− f∗(x) + f∗(x)− y)2 − (f∗(x)− y)2

]
= E

[
(h∗(x)− f∗(x))2 + (h∗(x)− f∗(x))(f∗(x)− y)

]
= E

[
(h∗(x)− f∗(x))2

]
= ∥h∗ − f∗∥22.

MH3520-Ch.5, p.31

Bounding the generalization error

Generalization error: Rn(hn)−R(hn)
If hn ≡ h was deterministic and fixed, this would be the difference
between an empirical mean and a mean.

By the central limit theorem, it would converge to zero at rate n−1/2.

However, as hn is random and highly correlated with the data, one
has to resort to uniform estimates.

Uniform generalization error: suph∈H |Rn(h)−R(h)|
Increases when H increases.

Is the main focus of statistical learning theory.

Is the norm of Rn −R in the Banach space B(H,R) of bounded
functions with the supremum norm:

sup
h∈H
|Rn(h)−R(h)| = ∥Rn −R∥B(H,R).

MH3520-Ch.5, p.32

Bounding the estimation error

Estimation error: R(hn)−R(h∗)
Is bounded by twice the uniform generalization error if hn minimizes
the empirical risk:

. . . ≤ R(hn)−Rn(hn) +Rn(hn)−Rn(h
∗)︸ ︷︷ ︸

≤0

+Rn(h
∗)−R(h∗)

≤ 2 sup
h∈H
|Rn(h)−R(h)|︸ ︷︷ ︸

uniform generalization error

.

That’s yet another reason why uniform estimates on the
generalization error are needed.

MH3520-Ch.5, p.33

Summary: what bounds do we need?

The statistical risk is always present if there is noise in the labels; there is
nothing one can do about it. Moreover, the estimation error is bounded in
terms of the uniform generalization error. We summarize our findings:

Theorem

If hn ∈ H minimizes the empirical risk Rn, then

R(hn) ≤ R(f∗)︸ ︷︷ ︸
statistical risk

+R(h∗)−R(f∗)︸ ︷︷ ︸
approximation error

+2 sup
h∈H
|Rn(h)−R(h)|︸ ︷︷ ︸

uniform generalization error

.

Our next goal is to construct bounds for the uniform generalization error.
If there was a central limit theorem in the Banach space B(H,R), we
would be done, but it’s not so simple. . .

MH3520-Ch.5, p.34

Questions to answer for yourself / discuss with friends

Repetition: What terms do you need to control to get error bounds
for empirical risk minimization?

Check your understanding: What’s an example of a norm which is
stronger than the L2 norm?

Transfer: Describe maximum likelihood estimation as an empirical
risk minimization problem. What is the main challenge there:
bounding the approximation or generalization error?

MH3520-Ch.5, p.35

MH3520 Chapter 5

Part 6

Concentration inequalities

MH3520-Ch.5, p.36

Empirical mean

Standing assumption. (Ω,F ,P) is a probability space carrying iid. random
variables X,X1, X2, · · · ∈ L2(Ω, B) with mean µ taking values in a
separable Banach space B.

Definition

The empirical mean of X1, . . . , Xn is

Xn :=
1

n

n∑
i=1

Xi.

Remark. Next, we will review some classical results on convergence of the
empirical mean to the mean. We’ll see them work nicely if B is Hilbert
and break down if B is merely Banach.

MH3520-Ch.5, p.37

Law of large numbers

Here is a quantitative law of large numbers, meaning that it asserts not
merely convergence but also gives a convergence rate of 1/2:

Theorem

If B is a Hilbert space, then the empirical mean converges in L2(Ω, B) to
the mean:∥∥Xn − µ

∥∥
L2(Ω,B)

≤ 1√
n

∥∥X − µ∥∥
L2(Ω,B)

= O(n−1/2).

Proof: see next slide.

Remark. As an aside, the strong law of large numbers would assert almost
sure convergence Xn → µ.

MH3520-Ch.5, p.38

Law of large numbers (cont.)

Proof. Without loss of generality µ = 0.

By independence, E[⟨Xi, Xj⟩] = ⟨E[Xi],E[Xj]⟩ = 0. (This can be
seen via approximation by elementary random variables.)

By Pythagoras, and by the identical distribution of all Xi’s,

E
[
∥Xn∥2

]
=

1

n2

n∑
i,j=1

E
[
⟨Xi, Xj⟩

]
=

1

n2

n∑
i=1

E
[
∥Xi∥2

]
=

1

n
E
[
∥X∥2

]
.

Taking the square root on both sides yields the desired estimate.

MH3520-Ch.5, p.39

Convergence in distribution

For a more fine-grained analysis of the convergence Xn → µ, we need the
notion of convergence in distribution:

Definition

A sequence of random variables Yn ∈ L0(Ω, B) converges in distribution
to a random variable Y ∈ L0(Ω, B) if for all continuous bounded functions
f : B → R,

E[f(Yn)] −−−→
n→∞

E[f(Y)].

Remark. Convergence in distribution is the weakest of all notions of
stochastic convergence; it is implied by convergence in L0(Ω, B).

MH3520-Ch.5, p.40

Central limit theorem

Here is the promised refinement of the law of large numbers, obtained by
rescaling the empirical mean:

Theorem

Let B be a Hilbert space. Then, the rescaled empirical means

Yn :=
√
n(Xn − µ)

converge in distribution to a normal distribution.

Proof: skipped (uses the Fourier transform).

Remark. There are two things to learn from this: first, the rate of 1/2 is
sharp, and second, the rescaled empirical means are asymptotically normal.

MH3520-Ch.5, p.41

Beyond Hilbert spaces?

Without any further assumptions, the central limit theorem and the
associated convergence of order 1/2 fail on Banach spaces:

Example

Let B = B(H,R) be the Banach space of real-valued bounded functions
on a set H, endowed with the supremum norm. Assume that Xn(h),
n ∈ N, h ∈ H, are iid. with values ±1 with probability 1/2. Then
X1, X2, . . . are bounded iid. random variables with values in B and mean
µ = 0. If H is an infinite set, then ∥Xn − µ∥B(H,R) = 1 almost surely.

Remark. This means no convergence in any Lp, not even in L0.

MH3520-Ch.5, p.42

To the rescue: concentration inequalities

We’ll have to lower our ambitions.

Additional assumption:

X(h) independent of X(k) for h ̸= k was the worst possible scenario.

To save our skin, we will assume X(h) to be Lipschitz in h.

Then, an error bound for h is also an error bound for all nearby k’s.

For this reason, it will suffice to consider finitely many h, meaning
that we need bounds for B = R only.

Weaker conclusion:

We will gain control over Xn − µ in L0 but not in Lp, p > 0.

The bounds take the form of concentration inequalities, which say
that the error has most mass near zero, and only very little mass in
the tails.

MH3520-Ch.5, p.43

Tails of normal distributions

To get some intuition, let us try to bound the tails of a normal
distribution.

Lemma

If X is standard normally distributed, then its tails are bounded as follows:

∀ϵ > 0 : P
[
|X| ≥ ϵ

]
≤ 2e−

ϵ2

2 .

Proof. This follows from the one-sided bound

P
[
X ≥ ϵ

]
≤ inf

t∈R+
E
[
et(X−ϵ)

]
= inf

t∈R+
e

t2

2
−ϵt = e−

ϵ2

2 .

MH3520-Ch.5, p.44

Bernstein inequality

By the previous lemma, if Xn − µ was N(0, σ2/n) distributed, then

P
[
|Xn − E[X]| ≥ ϵ

]
≤ 2e−

nϵ2

2σ2 .

In reality, Xn − µ is only approximately N(0, σ2/n) distributed, but
we get a similar bound:

Theorem

Let B = R, and suppose that |X − µ| ≤M and E[|X − µ|2] ≤ σ2. Then,
Bernstein’s inequality holds for all ϵ > 0:

P
[
|Xn − µ| ≥ ϵ

]
≤ 2e

− nϵ2

2(σ2+1
3Mϵ)

Proof: see next slide.

MH3520-Ch.5, p.45

Bernstein inequality (cont.)

Proof. Without loss of generality, µ = 0.

Similarly to the previous lemma, we have for all t > 0 that

P
[
Xn ≥ ϵ

]
= P

[n∑
i=1

Xi ≥ nϵ
]
≤ E

[
et(

∑n
i=1 Xi−nϵ)

]
=
(
e−ϵtE

[
etX
])n

.

We bound the moment generating function of X:

E
[
etX
]
= 1 + E[tX] +

∑
k≥2

tk

k!
E[X2Xk−2] ≤ 1 +

∑
k≥2

tk

k!
σ2Mk−2

= 1 +
σ2

M2

(
etM − 1− tM

)
︸ ︷︷ ︸

=:g(t)

≤ eg(t).

Minimization by setting the derivative to zero yields

P
[
Xn ≥ ϵ

]
≤ inf

t>0
e−nϵt+ng(t) = e−

nϵ2

2σ2 φ(Mϵ/σ2),

where φ(λ) = 2λ−2[(1 + λ) log(1 + λ)− λ] ≥ (1 + 1
3λ)

−1.
MH3520-Ch.5, p.46

Covering numbers

Definition

The covering number N (H, ϵ) of a metric space H is the minimal number
N ∈ N such that N discs of radius ϵ cover all of H.

[P. Grohs]

MH3520-Ch.5, p.47

Covering numbers and compactness

Theorem

A metric space is totally bounded if all of its covering numbers are finite,
i.e., if for every ϵ > 0, it can be covered by finitely many ϵ-balls.

Theorem

A metric space is compact if and only if it is complete and totally bounded.

Remark. In this sense, covering numbers can be seen as a quantification of
compactness.

MH3520-Ch.5, p.48

Covering numbers

Let’s consider covering numbers of subsets H of a Banach space B.

Counter-example (non-compact hypothesis classes)

N (H, ϵ) =∞ for all small ϵ unless H has compact closure in B.

Example (balls in finite dimensions)

Let H be a ball of radius r in a d-dimensional linear subspace of B. Then,
N (H, ϵ) ≤ (4r/ϵ)d.

Example (balls in function spaces)

Let B = Cb(X ,R) be the Banach space of bounded continuous functions
on a bounded domain X ⊆ Rd with smooth boundary. Let H be a ball of
radius r in the Sobolev space Hs(X ,R) or the Hölder space Cs(X ,R).
Then, logN (H, ϵ) ≤ (cr/ϵ)d/s, for some c > 0.

MH3520-Ch.5, p.49

Uniform Bernstein inequality

We’ll get tail bounds for finitely many h’s using Bernstein’s inequality and
derive tail bounds for all nearby k’s using a Lipschitz assumption:

Theorem

Let B = B(H,R) for some metric space H, and let L,M, σ be real
numbers such that for all h, k ∈ H,

|X(h)− µ(h)| ≤M, (bounded)

|X(h)−X(k)| ≤ L d(h, k) (Lipschitz)

E[|X(h)− µ(h)|2] ≤ σ2. (2nd moment)

Then, the uniform Bernstein inequality holds, i.e., for all ϵ > 0:

P
[
sup
h∈H
|Xn(h)− µ(h)| ≥ ϵ

]
≤ N (H, ϵ

4L)2e
− nϵ2

4(2σ2+1
3Mϵ)

MH3520-Ch.5, p.50

Proof of the uniform Bernstein inequality

Proof.

Cover H by N (H, ϵ
2L) balls Bj of radius ϵ

4L centered at hj .

By the Lipschitz assumption, for any h ∈ Bj ,

|Xn(h)− µ(h)−Xn(hj) + µ(hj)| ≤ ϵ/2.
Thus, by Bernstein’s inequality with ϵ/2 in place of ϵ,

P
[
sup
h∈H
|Xn(h)− E[X(h)]| ≥ ϵ

]
≤
∑
j

P
[
sup
h∈Bj

|Xn(h)− E[X(h)]| ≥ ϵ
]

≤
∑
j

P
[
|Xn(hj)− E[X(hj)]| ≥

ϵ

2

]

≤ N (H, ϵ
4L)2e

− nϵ2

4(2σ2+1
3Mϵ)

MH3520-Ch.5, p.51

Implications and outlook

Convergence in L0: If n is sufficiently large such that the RHS of the
uniform Bernstein inequality is at most ϵ, then

VXn − µWL0(Ω,B(H,R)) ≤ ϵ,

i.e., Xn converges to µ in probability. The convergence rate depends
on the small-ϵ behavior of N (H, ϵ).

Outlook: There are some important refinements (e.g. better rates for
convex H). Covering numbers have been worked out for many
hypothesis classes (Euclidean spaces and many function spaces). We
next apply the results to statistical learning.

MH3520-Ch.5, p.52

Questions to answer for yourself / discuss with friends

Repetition: How fast does the empirical mean of iid. random variables
converge to the mean?

Repetition: What is the covering number of a metric space?

Check your understanding: Does the central limit theorem hold on
B(H,R) if H is a finite set? What is the covering number of a finite
set?

Check your understanding: How does the RHS of the uniform
Bernstein inequality behave for fixed n and small ϵ? And what about
fixed ϵ and large n?

MH3520-Ch.5, p.53

MH3520 Chapter 5

Part 7

Bounds on the uniform generalization error

MH3520-Ch.5, p.54

Assumptions

To be as specific as possible, we work with a quadratic loss. We assume
that our hypothesis class consists of bounded functions, and we endow it
with the supremum norm. Most of this can be generalized.

Standing assumption:

Input and output spaces: topological space X , real numbers Y := R.

Loss function: ℓ(y, y′) = (y − y′)2.

Hypothesis class (aka. model class): a set H of bounded measurable
functions h : X → Y, endowed with the supremum norm.

Observations: independent random variables (X,Y), (X1, Y1), . . . ,
(Xn, Yn), defined on a probability space (Ω,F ,P), distributed
according to a probability measure P on X × Y.

MH3520-Ch.5, p.55

Uniform generalization error

Recall that the empirical and expected risk of h ∈ H are defined as

Rn(h) =

n∑
i=1

ℓ(h(Xi), Yi), R(h) = E[ℓ(h(X), Y)].

By the central limit theorem or the quantitative law of large numbers,
the generalization error with fixed h ∈ H is of order n−1/2:∥∥Rn(h)−R(h)

∥∥
L2(Ω,R) = O(n−1/2).

The uniform generalization error is defined as

sup
h∈H
|Rn(h)−R(h)| =

∥∥Rn −R∥B(H,R),

where B(H,R) is the Banach space of bounded functions H → R
with the supremum norm.

MH3520-Ch.5, p.56

Bounding the uniform generalization error

Here is the foundational result of statistical learning theory:

Theorem

Assume that |h(x)− y| ≤M holds P -almost surely, and let
σ2 := suph∈HVar[(h(x)− y)2]. Then, for all ϵ > 0,

P
[
sup
h∈H
|Rn(h)−R(h)| ≥ ϵ

]
≤ N (H, ϵ

8M)2e
− nϵ2

4(2σ2+1
3M2ϵ) .

Proof. Apply the uniform Bernstein inequality with. . .

Xn(h) replaced by ℓ(h(Xn), Yn)),
M replaced by M2 because ℓ(h(x), y) ≤M2, and
L replaced by 4M because(
h(x)−y

)2−(k(x)−y)2 = (h(x)− k(x))︸ ︷︷ ︸
|...|≤∥h−k∥∞

(
h(x) + k(x)− 2y

)︸ ︷︷ ︸
|...|≤4M

.

MH3520-Ch.5, p.57

Bounding the estimation error

Recall that the estimation error R(hn)−R(h∗) is non-negative and
bounded by twice the uniform generalization error. However, this bound
can be sharpened.

Theorem

Assume that hn minimizes the empirical risk Rn over a convex hypothesis
set H, let |h(x)− y| ≤M hold P -almost surely, and let
σ2 := suph∈HVar[(h(x)− y)2]. Then, for all ϵ > 0,

P
[
R(hn)−R(h∗) ≥ ϵ

]
≤ N (H, ϵ

24M)e−
nϵ

288M2 .

Remark.

You get this new bound, with ϵ2 replaced by ϵ, by setting σ2 = 0.

Intuitively, σ2 quantifies the statistical risk, and the statistical risk
cancels out in the difference R(hn)−R(h∗).

MH3520-Ch.5, p.58

From L0 to Lp bounds

Lemma

For any X ∈ Lp(Ω, B),

E[∥X∥p] =
∫ ∞

0
pϵp−1P[∥X∥ ≥ ϵ] dϵ.

Proof. If ∥X∥ has density f and distribution F , integration by parts yields

E[∥X∥p] =
∫ ∞

0
ϵpf(ϵ) dϵ = ϵp(1− F (ϵ))

∣∣∞
0︸ ︷︷ ︸

=0

+

∫ ∞

0
pϵp−1(1− F (ϵ)) dϵ.

Remark. This applies well to the bounds in the previous two theorems,
which involve Gaussian or exponential densities.

MH3520-Ch.5, p.59

From L0 to Lp bounds

Recall that N (H, ϵ) is bounded if H is a finite set, ≈ ϵ−d if H is a ball in

a d-dimensional normed space, and ≈ ecϵ−d/s
if H is a ball in a function

space with regularity s on a bounded d-dimensional domain.

Corollary (Uniform generalization error)

∥Rn −R∥Lp(Ω,B(H,R)) ≲


n−1/2, if N (H, ϵ) is bounded

n(−1+d/p)/2, if N (H, ϵ) ≲ ϵ−d,

∞, if N (H, ϵ) ≈ ecϵ−d/s

Corollary (Estimation error)

∥R(hn)−R(h∗)∥Lp(Ω,R) ≲


n−1, if N (H, ϵ) is bounded

n−1+d/p, if N (H, ϵ) ≲ ϵ−d,

∞, if N (H, ϵ) ≈ ecϵ−d/s

MH3520-Ch.5, p.60

Putting it all together

If there is no approximation error, i.e., f∗ ∈ H, then. . .

We have shown a quantitative version of the statement that R(hn)
converges to R(f∗) in probability, i.e.,

∀ϵ > 0 : lim
n→∞

P[|R(hn)−R(f∗)| ≥ ϵ] = 0.

In words, hn is probably approximately correct (PAC). Similarly, the
uniform Bernstein inequality is called a PAC bound.

Some of these L0 bounds can be turned into Lp bounds.

If there is an approximation error, i.e., f∗ /∈ H, then. . .

The above statements don’t hold, unless we consider increasing
hypothesis classes Hn such that the approximation error
infh∈Hn R(h)−R(f∗) tends to zero as n→∞.

How fast will will it tend to zero? This leads into function
approximation theory.

MH3520-Ch.5, p.61

Questions to answer for yourself / discuss with friends

Repetition: Describe the PAC bound on the uniform generalization
error provided by statistical learning theory.

Check your understanding: We used the supremum norm on H.
Could we alternatively use some weaker or stronger norm?

Discussion: Can you spot any points where the error analysis of
statistical learning theory leaves room for improvements?

MH3520-Ch.5, p.62

MH3520:Mathematics of Deep Learning

Chapter 6

Basics of functional analysis

MH3520-Ch.6, p.1

Context

Last chapters:

Numerical optimization ⇝ training neural networks

Probability theory ⇝ error bounds for learning algorithms

This chapter: basics of functional analysis

Topological vector spaces and linear mappings between them

Prime example: function spaces and integral operators

Next chapter:

Perceptrons are universal, i.e., dense in certain function spaces.

MH3520-Ch.6, p.2

What is functional analysis?

. . . the single most successful mathematical theory of the 20th century!

Algebra studies sets endowed with operations such as addition,
multiplication, inverse, etc.

Topology studies sets where continuous passing from some elements
to others makes sense.

Functional analysis studies sets which have both algebraic and
topological structure (for instance, topological vector spaces).

There are applications in many fields of pure and applied mathematics
(e.g. differential equations, harmonic analysis, numerical analysis, inverse
problems) and in the natural sciences (e.g. quantum mechanics)

MH3520-Ch.6, p.3

Overview of Chapter 6

1 Topology

2 Topological vector spaces

3 A zoo of function spaces

4 Convexity and the Hahn–Banach theorem

5 Completeness and the uniform boundedness principle (Optional)

MH3520-Ch.6, p.4

Sources for this chapter:

Helemskii (2006): Lectures and exercises on functional analysis.
Mathematical Monographs, Volume 233. American Mathematical
Society.

MH3520-Ch.6, p.5

MH3520 Chapter 6

Part 1

Topology

MH3520-Ch.6, p.6

Topology

Definition

A topology on a set E is a collection O of sets, which are called open, s.t.

The empty set ∅ and the full set E are open, i.e.,

∅ ∈ O, Ω ∈ O.

The union of open sets is open, i.e., for any index set I,

Ai ∈ I for all i ∈ I =⇒
⋃
i∈I

Ai ∈ O.

The finite intersection of open sets is open, i.e., for any n ∈ N,

A1, . . . , An ∈ O =⇒
n⋂

i=1

Ai ∈ O.

The tuple (E,O) is called a topological space.

MH3520-Ch.6, p.7

Examples of topological spaces

Every metric space and normed space is a topological space:

Example

The open sets (defined as unions of open balls) in a normed space or
metric space form a topology; it is the smallest topology containing all
open balls.

Here is the smallest possible topology:

Example

The trivial topology on E is O = {∅, E}.

Here is the largest one, which is commonly used on countable sets:

Example

The discrete topology on E is the power set O = 2E = {A : A ⊆ E}.
MH3520-Ch.6, p.8

Neighborhoods

Definition

A neighborhood of a point x is a set U such that x ∈ O ⊆ U for some
open set O.

Note that a set is open if and only if it is a neighborhood of all of its
points. Here is a technical detail:

Definition

A topological space is called Hausdorff if any two distinct points have
disjoint neighborhoods.

We will always consider Hausdorff spaces, unless mentioned otherwise.

Example

Every normed or metric space is Hausdorff. However, spaces of measurable
functions (without equivalence almost everywhere) with Lp norms (or
rather semi-norms!) are non-Hausdorff.

MH3520-Ch.6, p.9

Continuity

Definition

A function f : E1 → E2 between topological space (E1,O1) and (E2,O2)
is continuous if

∀O2 ∈ O2 : f−1(O2) ∈ O1.

Remark. This notion of continuity extends the usual one for metric and
normed spaces.

Definition

A sequence x : N→ E converges to a point x in a topological space
(E,O) if

∀O ∈ O such that x ∈ O : ∃N ∈ N : ∀n ≥ N : xn ∈ O.

Remark. More generally, one may replace N by a directed set I. Then,
x : I → E is called a net. The motivation is that convergence of
sequences does not identify the topology, but convergence of nets does.

MH3520-Ch.6, p.10

New topological spaces from old ones

Definition

The product of topological spaces (Ei)i∈I is the set E :=
∏

i∈I Ei with the
smallest topology such that all projections pri : E → Ei are continuous.

Remark. Finite product of normed spaces are normed, and countable
products of metric spaces are metric spaces:

∥x∥ :=
n∑

i=1

∥xi∥i, d(x, y) :=

∞∑
i=1

2−i di(xi, yi)

1 + di(xi, yi)
.

Definition

The topology on a subset F of a topological space is defined as the
smallest topology such that the inclusion i : F → E is continuous.

Remark. Subspaces of normed spaces are normed, and subsets of metric
spaces are metric spaces.

MH3520-Ch.6, p.11

Interior, closure, and boundary

Definition

A set is closed if its complement is open.

Definition

On any topological space, . . .

The interior A◦ of a set A is its largest open subset.

The closure A of a set A is its smallest closed superset.

The boundary ∂A of a set A is its closure minus its interior.

Remark. In metric or normed spaces, the closure of a set A is the set of all
limits of sequences in A.

Definition

A dense subset of a topological space E is a set whose closure is all of E.

MH3520-Ch.6, p.12

Compactness

A cover of a set is a family of subsets whose union is all of the set. A
cover is open if it consists of open sets and finite if it consists of finitely
many sets. A sub-cover is a sub-family which is a cover.

Definition

A set is compact if every open cover has a finite sub-cover.

Theorem

A metric space is compact if and only if it is complete and totally
bounded,3if and only if every sequence has a converging subsequence.

A subset of a compact space is compact if and only if it is closed.

The continuous image of a compact set is compact.

The product of compact sets is compact.

3Total boundedness means that all covering numbers are finite.
MH3520-Ch.6, p.13

Questions to answer for yourself / discuss with friends

Repetition: What is the definition of a topology, and what does it
have to do with continuity and convergence?

Check your understanding: True or false: a converging sequence is a
continuous function N ∪ {∞} → E.

Check your understanding: Complete the sentence: A set A in a
metric space E is dense if for every point x ∈ E, . . .

Discussion: Let’s try to prove this together: the continuous image of
a compact set is compact.

MH3520-Ch.6, p.14

MH3520 Chapter 6

Part 2

Topological vector spaces

MH3520-Ch.6, p.15

Topological vector spaces

The object of interest in functional analysis are topological vector spaces
and continuous linear functions (aka. maps) between them:

Definition

A topological vector space is a vector space E endowed with a topology
such that addition E × E → E and scalar multiplication R× E → E are
continuous.

Example

Every normed vector space is a topological vector space: continuity of
addition follows from the triangle inequality, and continuity of scalar
multiplication follows from the absolute homogeneity of the norm.

Example

If the norm is replaced by a metric, continuity of addition and scalar
multiplication are not automatic; one speaks of metric vector spaces.

MH3520-Ch.6, p.16

Continuity and boundedness

Lemma

A linear map between topological vector spaces is continuous if and only if
it is continuous at zero (or any other point).

Proof. Let A : E → F be linear.

A is continuous at x⇐⇒ A(· − x) is continuous at 0

⇐⇒ A(·)−A(x) is continuous at 0

⇐⇒ A(·) is continuous at 0.

Lemma

A linear map between normed vector spaces is continuous if and only if it
is bounded, i.e., the image of the unit ball is a bounded set.

MH3520-Ch.6, p.17

Dual spaces

Definition

The (topological) dual space E∗ of a topological vector space E is the set
of continuous linear functionals E → R.

Example

The dual of a normed space is a Banach space when endowed with the
operator norm.

Example

Hilbert spaces are self-dual, i.e., a Hilbert space E is isomorphic to its dual
E∗ via the Riesz isomorphism.

MH3520-Ch.6, p.18

Topologies on dual spaces

We have already encountered the strong topology:

Definition

The strong topology on the dual E∗ of a normed space E is given by the
operator norm ∥α∥ := sup

{
|α(x)| : x ∈ E, ∥x∥ ≤ 1}. Then, E∗ is a

Banach space with this norm.

There is also another natural topology on a dual:

Definition

The weak* topology on the dual E∗ of a topological vector space E is the
product topology on

E∗ =
∏
x∈E

R, α ∈ E∗↭ (α(x))x∈E .

Convergence αn → α in the weak* topology on E∗ is equivalent to
point-wise convergence, i.e., αn(x)→ α(x), for all x ∈ E.

MH3520-Ch.6, p.19

Topologies on pre-dual spaces

Every α ∈ E∗ is by definition continuous E → R. Here is the smallest
topology with this property:

Definition

The weak topology on a topological vector space E is the smallest
topology such that all α ∈ E∗ are continuous.

Remark. In a pair (E,E∗), we call E the pre-dual and E∗ the dual.
Beware of the asymmetry: E∗ is uniquely determined by E but not vice
versa. Moreover, every space is a pre-dual, but not every space is a dual.

Example

The weak and weak* topologies can be strictly smaller than the norm
topology (aka. strong topology). For example, the unit vectors en in ℓ2

converge weakly (but not strongly) to zero. To see this, recall that every
continuous linear functional on ℓ2 has the Riesz representation ⟨·, x⟩ℓ2 for
some x ∈ ℓ2, and note that ⟨en, x⟩ℓ2 = xn → 0.

MH3520-Ch.6, p.20

Finite versus infinite dimensions

More than one topology on the same space E or E∗!? Yes, that’s very
common in infinite dimensions, but impossible in finite dimensions:

Theorem

On an n-dimensional vector space, there exists one and only one topology
such that addition and scalar multiplication are continuous.

This explains why topology is rarely discussed for finite-dimensional vector
spaces—there is not much to talk about.

MH3520-Ch.6, p.21

Questions to answer for yourself / discuss with friends

Repetition: What is a topological vector space? What is its dual
space? What is the weak versus strong topology?

Check your understanding: What’s the difference between a collection
(xi)i∈I of elements in E and a function x : I → E? What spaces do
they belong to?

Check your understanding: Does ∥ · ∥1 ≤ ∥ · ∥2 imply O1 ⊆ O2 for the
corresponding topologies?

Transfer: Can you give some examples of topological vector spaces?

MH3520-Ch.6, p.22

MH3520 Chapter 6

Part 3

A zoo of function spaces

MH3520-Ch.6, p.23

Signed measures

Assumption. (Ω,F) is a measurable space.

Definition

A signed measure is a countably additive function µ : F → R satisfying
µ(∅) = 0.

Definition

M(Ω) is the Banach space of signed measures µ with finite total variation
norm ∥µ∥M(Ω) = ∥µ∥1 defined as

sup
{ n∑

i=1

|µ(Ai)| : A1, . . . , An ∈ F disjoint, n ∈ N
}
<∞.

Remark. Every signed measure µ is the difference µ+ − µ− between two
unsigned measures, and ∥µ∥1 = µ+(Ω) + µ−(Ω).

MH3520-Ch.6, p.24

Continuous functions

Assumption. K is a compact metric space.

Definition

C(K) is the Banach space of continuous functions

f : K → R, ∥f∥C(K) := ∥f∥∞ := sup
x∈K
|f(x)|.

Theorem (Riesz–Kakutani)

C(K) is separable.

The dual of C(K) is the Banach space M(K), i.e., every continuous
linear functional on C(K) is given by integration with respect to
some measure.

MH3520-Ch.6, p.25

Continuous bounded functions

Assumption. X is a Hausdorff topological space, and B is a Banach space.

Definition

Cb(X,B) is the Banach space of continuous bounded functions

f : X → B, ∥f∥Cb(X,B) := ∥f∥∞ := sup
x∈X
∥f(x)∥B <∞.

Remark.

Cb(R,R) is not separable despite R being separable.

The dual of Cb(X,R) consists of measures which are merely finitely
additive.

Cc(X,B) is the subspace of compactly supported continuous
functions X → B. It may be incomplete unless X is compact.

MH3520-Ch.6, p.26

Continuously differentiable functions

Assumption. X is an open subset of a normed space E, B is a Banach
space, and k ∈ N.

Definition

Ck
b (X,B) is the Banach space of k times continuously differentiable

functions

f : X → B, ∥f∥Ck
b (X,B) :=

k∑
j=0

∥ djf∥Cb(X,L(j)(E,B)) <∞.

Remark. C1
b implies Lipschitz.

MH3520-Ch.6, p.27

Hölder functions

Assumption. X is an open subset of a normed space E, B is a Banach
space, and s ∈ (0,∞) \ N, i.e., s is a real but not a natural number.

Definition

Cs
b (X,B) is the Banach space of k := ⌊s⌋ times continuously

differentiable functions f : X → B with

∥f∥Cs
b (X,B) := ∥f∥Ck

b (X,B) + sup
x ̸=y∈X

∥ dkf(y)− dkf(x)∥L(k)(E,B)

∥y − x∥s−k
<∞.

Remark. Cs
b functions with s ∈ (0, 1) can be quite rough—think of a

sample path of (fractional) Brownian motion.

MH3520-Ch.6, p.28

Bounded smooth functions with bounded derivatives

Assumption. X is an open subset of a normed space E, and B is a
Banach space.

Definition

C∞
b (X,B) is the complete metric vector space of smooth functions

f : X → B with bounded derivatives of all orders, endowed with the metric

d(f, g) := Vf − gWC∞
b (X,B), VfWC∞

b (X,B) :=

∞∑
j=0

2−j ∥ djf∥
1 + ∥ djf∥ ,

where the norm on the RHS is in Cb(X,L
(j)(E,B)).

Remark. There is no norm for this topology, only a metric.

MH3520-Ch.6, p.29

Smooth functions and distributions

Assumption. E is Euclidean space, and B is a Banach space.

Definition

C∞(E,B) is the complete metric vector space of smooth functions
f : E → B, endowed with the metric

d(f, g) := Vf − gWC∞(E,B), VfWC∞(E,B) :=

∞∑
r,j=0

2−(i+j) ∥ djf∥r
1 + ∥ djf∥r

,

where the norm on the RHS is in Cb(Br(0), L
(j)(E,B)).

Definition

Distributions are continuous linear functionals on the space C∞
c (E,R) of

compactly supported smooth functions, i.e., elements of C∞
c (E,R)∗.

MH3520-Ch.6, p.30

Lp functions

Assumption. (Ω,F , µ) is a measure space.

Definition

For any p ∈ [1,∞), Lp(Ω) is the Banach space of measurable functions

f : Ω→ R, ∥f∥Lp(Ω) :=
(∫

Ω
|f |pµ

)1/p
<∞,

modulo equality µ-almost everywhere.

Theorem

Let p ∈ [1,∞) and q ∈ (1,∞] with 1
p + 1

q = 1.

Lp(Ω) is separable if Ω is a separable metric space endowed with its
Borel sigma algebra.

The dual of Lp(Ω) is Lq(Ω), i.e., every linear functional on Lp(Ω) is
given by integration with respect to some function in Lq(Ω).

MH3520-Ch.6, p.31

Sobolev functions

Assumption. Rd is the d-dimensional Euclidean space with the Borel
measure, k ∈ N, and p ∈ [1,∞).

Definition

W k,p(Rd) is the Banach space of functions f : Rd → R with
(distributional) derivatives up to order k in Lp(Ω), and

∥f∥Wk,p(Rd) :=

k∑
j=0

∥ djf∥Lp(Rd,L(j)(Rd,R)) <∞.

Remark.

W k,2(Rd) is a Hilbert space and is denoted by Hk(Rd).

The dual of W k,p is W−k,q—a space of distributions.

MH3520-Ch.6, p.32

Besov spaces

Assumption. Rd is the d-dimensional Euclidean space with the Borel
measure, α ∈ (−∞,∞), and p, q ∈ [1,∞].

Definition

Bα
p,q is a Banach space of distributions on Rd, whose definition you do not

want to see. It consists of (equivalence classes of) functions if α ≥ 0.

Besov spaces encompass many of the above-mentioned spaces:

Theorem

The following spaces are equal and carry equivalent norms:

Cα(Rd) = Bα
∞,∞(Rd) if α ∈ (0,∞) \ N.

Lp(Rd) = B0
p,p(Rd).

Hα(Rd) =Wα,2(Rd) = Bα
2,2(Rd).

MH3520-Ch.6, p.33

Questions to answer for yourself / discuss with friends

Repetition: Continuous functions, continuously differentiable
functions, smooth functions, Lp-functions, Sobolev functions, . . .

Discussion: What kind of sequence spaces do you get by using the
natural numbers as the domain of the function space?

Discussion: Let’s think about how to prove completeness of the
function spaces in our little zoo.

MH3520-Ch.6, p.34

MH3520 Chapter 6

Part 4

Convexity and the Hahn–Banach theorem

MH3520-Ch.6, p.35

Hahn–Banach extension theorem

We have already encountered extensions from dense subspaces (an easy
task). Extensions from non-dense subspaces are an entirely different story:

Theorem (Hahn–Banach extension)

If E is a normed space and V a linear subspace, then any continuous
linear functional α : V → R can be extended to a linear functional E → R
with the same operator norm.

Remark.

This requires convexity: normed spaces are locally convex, i.e., every
zero-neighborhood contains a convex zero-neighborhood, and the
Hahn–Banach theorem generalizes to arbitrary locally convex spaces.

Completeness is not needed anywhere.

The proof uses the lemma of Zorn to find a maximal extension and
argues that the maximal extension must be defined on all of E.

MH3520-Ch.6, p.36

Proof of the Hahn–Banach extension theorem

The proof uses two lemmas, which are shown subsequently.

Proof of the Hahn–Banach extension theorem.

If such extensions exists on all Wi in an increasing family of subspaces
(Wi)i∈I , then an extension exists on

⋃
iWi.

By the lemma of Zorn (see next), there exists a maximal extension,
defined on some subspace W

If there was any y /∈W , then the lemma on extensions by one
dimension (see next) would allow us to extend to W ⊕ (Ry).
This would contradict the maximality of W . Thus, W = E.

MH3520-Ch.6, p.37

Proof of the Hahn–Banach extension theorem

Lemma (Extensions by one dimension)

The theorem holds true if E = V ⊕ Ry.

Proof. Without loss of generality ∥α∥V ∗ = 1.

We need to find α(y) ∈ R such that

∀x ∈ V : −∥x+ λy∥ ≤ α(x) + λα(y) ≤ ∥x+ λy∥.

This is automatic for λ = 0. Otherwise, dividing by λ, replacing x/λ
by x, and subtracting α(x) yields

∀x ∈ V : −∥x+ y∥ − α(x) ≤ α(y) ≤ ∥x+ y∥ − α(x). (∗)

By the triangle inequality, for any x1, x2 ∈ V ,

α(x1)− α(x2) = α(x1 − x2) ≤ ∥x1 − x2∥ ≤ ∥x1 + y∥+ ∥x2 + y∥.

Thus, in (∗), sup(LHS) ≤ inf(RHS), enabling a choice of α(y).
MH3520-Ch.6, p.38

Digression: Zorn’s lemma

If you are building a mathematical object in stages and find that (a) you
have not finished even after infinitely many stages, and (b) there seems to
be nothing to stop you continuing to build, then Zorn’s lemma may well
be able to help you:

Lemma (Zorn’s lemma)

A partially ordered set1 with the property that every chain2 has an upper
bound,3 contains at least one maximal element.4

Remark.

The proof is indirect and uses the axiom of choice.

In Zermelo–Fraenkel set theory, it is equivalent to the axiom of choice.

1A set with a reflexive, antisymmetric, and transitive binary relation ≤
2A totally ordered subset
3An element that is greater or equal to any element of the chain
4An element that is not smaller than any other element

MH3520-Ch.6, p.39

Sketch of proof of Zorn’s lemma

Sketch of proof.

Every partially ordered set contains a
chain, which has no strict upper bound:

– Suppose for contradiction that every
chain C had a strict upper bound,
denoted by u(C).

– Defining the function u(C) requires
the axiom of choice.

– Construct a chain C∗ starting from
some x0 by adding inductively the
strict upper bound u of all previous
elements in the chain.

– By definition, C∗ contains u(C∗).
However, this contradicts that u(C∗)
is a strict upper bound for C∗.

Let’s take a chain without strict upper
bound. By assumption, it has an upper
bound. This upper bound is maximal.

MH3520-Ch.6, p.40

Implications of the Hahn–Banach theorem

The Hahn–Banach extension theorem ensures that there are ‘many’ linear
functionals: for instance, sufficiently many for distinguishing points in E.

Corollary

If E is normed, then E∗ separates points of E, i.e., for any x, y ∈ E exists
α ∈ E∗ with α(x) ̸= α(y).

Proof. Extend α : R(y − x)→ R, α(y − x) := 1, to all of E.

Beyond normed spaces (more precisely, beyond locally convex spaces), the
dual may fail to separate points and may even be trivial:

Example

If E is a metric vector space, it may happen that E∗ = 0. For instance,
this happens for E = Lp([0, 1]) with p ∈ [0, 1).

MH3520-Ch.6, p.41

Implications of the Hahn–Banach theorem (cont.)

Another corollary of Hahn–Banach is that the norm of a vector can be
computed by testing with linear functionals:

Corollary

If E is normed, then

∀x ∈ E : ∥x∥ = sup
{
|α(x)| : α ∈ E∗, ∥α∥ ≤ 1

}
.

Proof.

For any α ∈ E∗ with ∥α∥ ≤ 1, one has |α(x)| ≤ ∥α∥∥x∥ ≤ ∥x∥.
It remains to construct α such that equality holds above.

Extend α : Rx→ R, α(x) := ∥x∥, to all of E via Hahn–Banach.

Then, α ∈ E∗ with ∥α∥ = 1 and |α(x)| = ∥x∥.

MH3520-Ch.6, p.42

Implications of the Hahn–Banach theorem (cont.)

The Hahn–Banach theorem implies a very useful criterion for testing
whether a linear subspace is dense:

Corollary (very useful criterion of Dense)

A linear subspace V of a normed space E is dense if and only if every
continuous linear functional E → R which vanishes on V vanishes
everywhere.

Proof.

If V is not dense, then there exists some y ∈ E \ V , where V is the
closure of V . Define a linear functional

α : V ⊕ Ry → R, α(x+ λy) = λ.

α is continuous because its kernel V is closed.

By Hahn–Banach, α extends to a non-zero continuous linear
functional on E which vanishes on V .

MH3520-Ch.6, p.43

Questions to answer for yourself / discuss with friends

Repetition: State the Hahn–Banach extension theorem.

Check your understanding: In Euclidean coordinates, how would you
construct a Hahn–Banach extension?

Useless knowledge: Zorn is the last name of a 20th century
mathematician from Germany. Do you know what his name means?

Discussion: Can you give a finite-dimensional example of a dense
subspace?

MH3520-Ch.6, p.44

MH3520 Chapter 6

Part 5

Completeness and the uniform boundedness principle
(Optional)

MH3520-Ch.6, p.45

Uniform boundedness principle

Theorem (Banach–Steinhaus)

Let Ai : E → F be a family of continuous linear functions from a Banach
space E to a normed space F , indexed by i ∈ I for some index set I.
Then, point-wise boundedness

∀x ∈ E : sup
i∈I
∥Ai(x)∥ <∞

implies uniform boundedness:

sup
i∈I
∥Ai∥ = sup

i∈I
sup
∥x∥≤1

∥Ai(x)∥ <∞.

Remark.

This requires completeness but no convexity (there are generalizations
to complete metric vector spaces, which may not be locally convex).

The proof is elementary. [Sokal 2011]

MH3520-Ch.6, p.46

No uniform boundedness principle without completeness

Counter-example

Let c00 be the set of real-valued sequences with finitely many non-zero
entries, endowed with the supremum norm. Then c00 is incomplete
(why?), and the uniform boundedness principle does not hold: For
instance, the family

An(x) = nxn
a, n ∈ N, x ∈ c00,

is point-wise bounded but not uniformly bounded.

axn denotes the n-th entry of x

MH3520-Ch.6, p.47

Proof of the uniform boundedness theorem

Here is an auxiliary lemma.

Lemma

Let E and F be normed spaces. For any A ∈ L(E,F), x ∈ E, and r > 0,

∥A∥r := sup
y∈Br(0)

∥A(y)∥ ≤ sup
y∈Br(x)

∥A(y)∥.

Proof. By the triangle inequality in the form ∥a− b∥ ≤ ∥a∥+ ∥b∥,

∥Ty∥ ≤ 1

2

(
∥T (x+ y)∥+ ∥T (x− y)∥

)
≤ max

{
∥T (x+ y)∥, ∥T (x− y)∥

}
.

Now, take supy∈Br(0) on both sides.

MH3520-Ch.6, p.48

Proof of the uniform boundedness theorem (cont.)

Proof of the uniform boundedness principle.

Suppose that supi∈I ∥Ai∥∞.

Choose (An)n∈N such that ∥An∥ ≥ 4n.

Set x0 := 0, and for n ≥ 1 use the lemma with r := 3−n to choose
inductively xn ∈ E such that

∥xn − xn−1∥ ≤ 3−n and
2

3
∥An∥3−n ≤ ∥Anxn∥.

Then (xn) is Cauchy, hence convergent to some x ∈ E, and

∥x− xn∥ ≤
∞∑
j=n

∥xj+1 − xj∥ ≤
∞∑
j=n

3−(j+1) =
1

2
3−n.

It follows that

∥Anx∥ ≥
1

6
3−n∥An∥ ≥

1

6
(4/3)n →∞.

MH3520-Ch.6, p.49

Implication: open mapping theorem

Theorem

Let A : E → F be a continuous surjective linear function between Banach
spaces E and F . Then A is open, i.e., it maps open sets to open sets.

Remark.

Equivalently, images of open balls contain open balls. It suffices to
consider centered balls.

The open mapping theorem follows in an elementary way from the
uniform boundedness theorem. [Eldredge 2014]

Notation. In the sequel, Ur(0) and Vr(0) denote the centered open balls of
radius r in E and F , respectively.

MH3520-Ch.6, p.50

Proof of the open mapping theorem

Lemma

If A : E → F is a surjection between Banach spaces E and F , then

A(U1(0)) ⊇ Vr(0), for some r > 0.

Proof. Solve y = Ax by a sequence of regularized optimization problems:

G :=
{
(yn)n∈N : yn ∈ F

}
, ∥y∥G := sup

n∈N
inf
x∈E

(
∥x∥+ n∥yn −Ax∥

)
,

Sn : F → G, Sn(y) := (0, . . . , 0, y, 0, . . .).

Each Sn is bounded: setting x = 0 in ∥ · ∥G yields ∥Sn(y)∥ ≤ n∥y∥.
The family (Sn) is point-wise bounded: choosing x ∈ A−1(y) in
∥ · ∥G yields ∥Sn(y)∥ ≤ ∥x∥, independently of n.

By the uniform boundedness principle, ∥Sn∥ ≤ 1
r , for some r > 0.

If ∥y∥ < r, then ∥Sny∥ ≤ ∥Sn∥∥y∥ < 1, and there exists xn with
∥xn∥+ n∥y −Axn∥ < 1. Thus, y = limn→∞Axn ∈ A(U1(0)).

MH3520-Ch.6, p.51

Proof of the open mapping theorem (cont.)

Proof of the open mapping theorem:

We claim that A(U1(0) ⊇ Vr/2(0). Let y ∈ Vr/2(0).
The lemma implies for all n ∈ N that A(U2−n(0) ⊇ Vr2−n(0).

Set x0 = 0 and y0 = y. Inductively, for each n ≥ 1,

define yn := yn−1 −Axn−1, note that ∥yn∥ < r2−n,

find xn such that ∥xn∥ < 2−n and ∥yn −Axn∥ < 2−(n+1).

Then, x :=
∑

n xn converges absolutely, ∥x∥ ≤∑n 2
−n < 1, and

Ax = limn→∞Ax1 + · · ·+Axn−1 = limn→∞ y − yn = y.

MH3520-Ch.6, p.52

Implication: closed graph theorem

Corollary

A continuous bijective linear function between Banach spaces has a
continuous inverse.

Proof. A is open if and only if A−1 is continuous.

Corollary (Closed graph theorem)

A linear function between Banach spaces is continuous if and only if it has
a closed graph.

Proof. ⇒ is trivial. We show ⇐.

Let G ⊆ E × F be the graph of A : E → F . Then G is Banach.

The projection prE |G : G ⊆ E × F → E is continuous bijective.

By the open mapping theorem, prE |G has a continuous inverse.

Thus, A = prF ◦(prE |G)−1 is continuous.
MH3520-Ch.6, p.53

Questions to answer for yourself / discuss with friends

Repetition: What is the uniform boundedness principle, and under
what assumptions does it hold?

Repetition: What are the closed graph and open mapping theorems?

Check your understanding: Verify that a continuous mapping
necessarily has a closed graph.

Discussion: Does the notion of completeness make sense on general
topological vector spaces?

MH3520-Ch.6, p.54

MH3520:Mathematics of Deep Learning

Chapter 7

Universality of multi-layer perceptrons

MH3520-Ch.7, p.1

Context

Last chapter:

Introduction to functional analysis

This chapter:

Multi-layer perceptrons are universal in the sense that they can
approximate any given function to arbitrary accuracy.

Next chapters:

Approximation theory: the same statement with quantitative control
over the approximation error

MH3520-Ch.7, p.2

Universality of multi-layer perceptrons

Universality means that any continuous function can be approximated
uniformly on compacts by multi-layer perceptrons.

This is a density result: multi-layer perceptrons are dense in C(K),
for each compact set K.

Thanks to Hahn–Banach, density of linear subspaces can be tested by
linear functionals.

This leads to the universal approximation theorem, which asserts that
perceptrons with discriminatory activation function are universal.

We use the Stone–Weierstrass theorem to find examples of
discriminatory activation functions, including the rectified linear unit.

MH3520-Ch.7, p.3

Overview of Chapter 7

1 Universality of multi-layer perceptrons

2 Banach algebras and the Stone–Weierstrass theorem

3 Integral transforms

4 Examples of discriminatory activation functions

MH3520-Ch.7, p.4

Sources for this chapter:

Helemskii (2006): Lectures and exercises on functional analysis.
Mathematical Monographs, Volume 233. American Mathematical
Society.

Petersen (2022): Neural Network Theory. Lecture Notes, University
of Vienna. pc-petersen.eu/Neural_Network_Theory.pdf

MH3520-Ch.7, p.5

pc-petersen.eu/Neural_Network_Theory.pdf

MH3520 Chapter 7

Part 1

Universality of multi-layer perceptrons

MH3520-Ch.7, p.6

Universality

Definition

A set of multi-layer perceptrons with input dimension d and output
dimension 1 is universal if it is dense in C(K), for all compact sets
K ⊆ Rd.

Remark.

Our goal is to show for certain activation functions that multi-layer
perceptrons with a single hidden layer are universal.

Universality cannot hold for all activation functions, as shown by the
following example.

Counter-example

There is no universality for multi-layer perceptrons with polynomial
activation function and bounded depth because these are polynomials of
bounded degree.

MH3520-Ch.7, p.7

Discriminatory activation functions

Definition

A measurable function ρ : R→ R is called discriminatory if for any d ∈ N
and compact set K ⊂ Rd, the zero measure is the only signed measure µ
on K which satisfies

∀a ∈ Rd, ∀b ∈ R :

∫
K
ρ
(
⟨a, x⟩+ b

)
µ(dx) = 0.

Remark. In words, a function is discriminatory if the only signed measure
which annihilates all it dilations and translations is the zero measure.

Counter-example

Polynomial functions are non-discriminatory because their dilations and
translations are polynomials of the same or lesser degree. This imposes
finitely many constraints on an infinite-dimensional measure space of
measures, allowing for non-zero annihilating measures.

MH3520-Ch.7, p.8

Universal approximation theorem

Theorem (Cybenko)

If ρ is discriminatory, then the set of multi-layer perceptrons of the form

h(x) =

n∑
i=1

wiρ(⟨ai, x⟩+ bi), n ∈ N, wi ∈ R, ai, bi ∈ Rd,

is universal.

Remark.

For deeper networks, one has to assume additionally that the lower
layers can represent or approximate the identity.

Universality is necessary for deep learning to have any chance to work.

However, it is not sufficient as an explanation for why deep learning
works so well—many other function classes such as polynomials,
trigonometric polynomials, etc. are also universal.

MH3520-Ch.7, p.9

Proof of the universal approximation theorem

Proof.

Let H be the set of multi-layer perceptrons of the form in the
theorem, seen as a linear subspace of C(K), for some compact set
K ⊂ Rd.

Recall that the dual of C(K) is the Banach space M(K) of signed
measures with finite total variation.

Any µ ∈M(K) which satisfies

∀h ∈ H :

∫
K
h(x)µ(dx) = 0

satisfies in particular that

∀a ∈ Rd, ∀b ∈ R :

∫
K
ρ
(
⟨a, x⟩+ b

)
µ(dx) = 0.

As ρ is discriminatory, the only such µ is the zero measure.

By the Hahn–Banach theorem, H is dense in C(K).
MH3520-Ch.7, p.10

Questions to answer for yourself / discuss with friends

Repetition: Recount the universal approximation theorem and its
proof.

Complete the sentence: If universality holds, then for any given
continuous function f . . .

Discussion: Can you give an example of a discriminatory and/or a
non-discriminatory activation function?

Discussion: Are there similar results for multiple output dimensions?

Discussion: How does Cybenko’s universality theorem differ from the
Stone–Weierstrass approximation theorem?

MH3520-Ch.7, p.11

MH3520 Chapter 7

Part 2

Banach algebras and the Stone–Weierstrass theorem

MH3520-Ch.7, p.12

Banach algebras

Definition

A Banach algebra is a Banach space A endowed with a multiplication,
which is a continuous bilinear map A×A→ A satisfying the associativity
identity (ab)c = a(bc).

Example

C(K) is a Banach algebra, for any compact space K.

Example

L(E,E) is a Banach algebra, for any Banach space E.

MH3520-Ch.7, p.13

Stone–Weierstrass theorem

Theorem (Stone–Weierstrass)

Let K be a compact topological space, and let A ⊆ C(K,R) satisfy

A is an algebra, i.e., closed under linear combinations and products,

A contains all constant functions, and

A is point-separating, i.e., for any x ̸= y ∈ K exists f ∈ A such that
f(x) ̸= f(y).

Then, A is dense in C(K,R).

Remark.

Proof: https://web.math.utk.edu/~freire/teaching/

m447f16/StoneWeierstrassNotes.pdf

We next consider some implications.

MH3520-Ch.7, p.14

https://web.math.utk.edu/~freire/teaching/m447f16/StoneWeierstrassNotes.pdf
https://web.math.utk.edu/~freire/teaching/m447f16/StoneWeierstrassNotes.pdf

Polynomial approximation

Corollary (Weierstrass)

Polynomials are dense in the Banach space C([0, 1],R).

Proof. The polynomials form an algebra, which contains all constant
functions and separates points.

Remark. There is a simple probabilistic proof of this corollary: if
X1, X2, . . . are iid. Ber(x)-distributed, then

E[f(Xn)] =

n∑
i=0

f

(
i

n

)(
n

i

)
xi(1− x)n−i

︸ ︷︷ ︸
polynomial

−−−→
n→∞

f(x),

and one can argue that this convergence is uniform in x.

MH3520-Ch.7, p.15

Trigonometric approximation

A trigonometric polynomial is a function of the form

f : [0, 1]→ R, f(x) = a0 +

n∑
k=1

(
ak cos(2πkx) + bk sin(2πkx)

)
.

Corollary (Weierstrass)

Trigonometric polynomials are dense in the Banach space C([0, 1],R).

Proof. The trigonometric polynomials form an algebra, which contains all
constant functions and separates points.

MH3520-Ch.7, p.16

Questions to answer for yourself / discuss with friends

Repetition: What does the Stone–Weierstrass theorem state in its
general form? What does it state for polynomials or trigonometric
polynomials?

Check your understanding: Can the compactness condition on the
domain of C(K) be dropped?

Transfer: What is the implication of Stone–Weierstrass for Fourier
series and splines?

MH3520-Ch.7, p.17

MH3520 Chapter 7

Part 3

Integral transforms

MH3520-Ch.7, p.18

Fourier transform

Definition

The Fourier transform of a signed Borel measure µ ∈M(Rd) is

µ̂ : Rd → C, µ̂(y) =

∫
Rd

exp(−i⟨x, y⟩)µ(dx).

Remark.

The Fourier transform of an integrable function f : Rd → R is defined
as the Fourier transform of fµ, where µ is the Lebesgue measure.

The Fourier transform of a random variable X : Ω→ Rd is the
Fourier transform of its distribution, i.e., X̂(y) = E[exp(−i⟨X, y⟩)].

Theorem

The Fourier transform is injective, i.e., µ can be recovered from µ̂.

MH3520-Ch.7, p.19

Proof of the injectivity of the Fourier transform

Proof. Let µ ∈M(Rd) satisfy µ̂ = 0.

Given ϵ > 0 and f ∈ Cc(Rd), choose r so large that f is supported in
K := [−r, r]d and that ∥1Rd\Kµ∥1 ≤ ϵ.
By Stone–Weierstrass, there is a trigonometric polynomial
p : Rd → C of period 2r with ∥f − p∥C(K) ≤ ϵ. Thus,∣∣∣ ∫

Rd

fµ
∣∣∣ ≤ ∣∣∣ ∫

K
(f − p)µ

∣∣∣+ ∣∣∣ ∫
Rd\K

(f − p)︸ ︷︷ ︸
=p

µ
∣∣∣+ ∣∣∣ ∫

Rd

pµ︸ ︷︷ ︸
=0

∣∣∣
≤ ∥f − p∥C(K)︸ ︷︷ ︸

≤ϵ

∥µ∥M(Rd) + ∥p∥Cb(Rd)︸ ︷︷ ︸
≤ϵ+∥f∥C(K)

∥µ∥M(Rd\K)︸ ︷︷ ︸
≤ϵ

.

As ϵ was arbitrary,
∫
fµ = 0. As f was arbitrary, µ vanishes on

compacts. By dominated convergence, µ vanishes everywhere.

MH3520-Ch.7, p.20

Radon transform for functions on R2

The Radon transform of a function is the collection of all its line integrals:

Definition

The Radon transform of a compactly supported continuous function
f ∈ Cc(Rd,R) is the function f : (0,∞)× [0, 2π),

f(r, φ) =

∫ ∞

−∞
f
(
r(cosφ, sinφ) + t(− sinφ, cosφ)

)
dt

r(cosφ, sinφ)

MH3520-Ch.7, p.21

Radon transform for measures

The Radon transform in higher dimensions is defined by integration
over hyperplanes, i.e., co-dimension 1 subspaces.

For measures in place of functions, we thicken the hyperplane:

Definition

The Radon transform of a signed Borel measure µ ∈M(Rd) is

µ : Rd × R× R→ R, µ(a, b1, b2) = µ
(
{x ∈ B : ⟨a, x⟩ ∈ (b1, b2]

)
.

Theorem

The Radon transform is injective, i.e., µ can be recovered from µ.

MH3520-Ch.7, p.22

Proof of the injectivity of the Radon transform

Proof.

Let µ be a signed measure with vanishing Radon transform.

For all indicator functions g = 1(b1,b2],∫
B
g(⟨a, x⟩)µ(dx) = 0.

By linearity, this holds for all elementary integrands g.

By approximation, this holds for all bounded measurable g.

In particular, ∫
B
exp(−i⟨a, x⟩)µ(dx) = 0.

By the injectivity of the Fourier transform, µ = 0.

MH3520-Ch.7, p.23

Questions to answer for yourself / discuss with friends

Repetition: Describe the Fourier transform and Radon transform of a
measure.

Check your understanding: Why did we have to thicken the
hyperplane?

Transfer: What about the Laplace transform, is it well defined and
injective on signed measures?

MH3520-Ch.7, p.24

MH3520 Chapter 7

Part 4

Examples of discriminatory activation functions

MH3520-Ch.7, p.25

Sigmoidal functions

Definition

A continuous function ρ : R→ R is called sigmoidal, if ρ(x)→ 1 for
x→∞ and ρ(x)→ 0 for x→ −∞.

Theorem (Cybenko)

Sigmoidal activation functions are discriminatory.

MH3520-Ch.7, p.26

Examples of sigmoidal functions

8 6 4 2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Logistic (aka. sigmoidal) function
ρ(x) = (1 + e−x)−1

8 6 4 2 0 2 4 6 8
1.0

0.5

0.0

0.5

1.0

Hyperbolic tangent
ρ(x) = tanh(x)

MH3520-Ch.7, p.27

Proof that sigmoidal functions are discriminatory

Proof.

Let µ ∈M(K) such that
∫
K ρ(⟨a, x⟩ − b)µ(dx) = 0 for a ∈ Rd, b ∈ R

As ρ is sigmoidal, one has for any θ ∈ R that

lim
λ→∞

ρ(λ(⟨a, x⟩ − b) + θ) =


1 ⟨a, x⟩ − b > 0

ρ(θ) ⟨a, x⟩ − b = 0

0 ⟨a, x⟩ − b < 0

Thus, by dominated convergence,

µ({⟨a, x⟩ > b}) + ρ(θ)µ({⟨a, x⟩ = b})

= lim
λ→∞

∫
K
ρ(λ(⟨a, x⟩ − b) + θ)dµ(x) = 0.

Taking the limit θ → −∞, we conclude that

∀a ∈ Rd, ∀b ∈ R : µ({⟨a, x⟩ > b}) = 0.

By linearity, µ({⟨a, x⟩ ∈ (b1, b2]}) = 0, i.e., the Radon transform of µ
vanishes. As the Radon transform is injective, µ = 0.

MH3520-Ch.7, p.28

Rectified linear units

Theorem

The rectified linear unit x 7→ max{0, x} is discriminatory.

Proof. The function η(x) := ρ(x)− ρ(x− 1) is sigmoidal, thus
discriminatory.

2 1 0 1 2
0

1

2

ρ(x) = max{0, x}
2 1 0 1 2

0

1

2

η(x) = ρ(x)− ρ(x− 1)
Then for any µ vanishes on ρ will then vanishes on η. Since η is
discriminatory then µ = 0, which implies ρ is discriminatory.

MH3520-Ch.7, p.29

Questions to answer for yourself / discuss with friends

Repetition: Give some examples of discriminatory activation
functions.

Check your understanding: Are sigmoidal functions bounded?

Check your understanding: Is being discriminatory necessary and
sufficient for universality?

Discussion: Are multi-layer perceptrons dense in Lp(K) for finite p?
What about p =∞?

MH3520-Ch.7, p.30

MH3520:Mathematics of Deep Learning

Chapter 8

Basics of approximation theory

MH3520-Ch.8, p.1

Context

Last chapter: universality of multi-layer perceptrons

Any continuous function can be approximated uniformly on compacts
by multi-layer perceptrons.

This chapter: approximation theory

Quantitative control over the approximation error

Approximation rates for Banach frames and orthonormal bases

Main result: high approximation rate if a sequence decays fast or a
function is smooth

Next chapters: approximation by multi-layer perceptrons

Approximation rates for multi-layer perceptrons

Deduced from approximation rates for splines or wavelets

MH3520-Ch.8, p.2

Approximation theory

Approximation theory:

How well can a possibly complicated function be approximated by
some class of simpler, easier to compute functions?

The approximating functions could be multi-layer perceptrons,
polynomials, trigonometric polynomials, splines, wavelets, or anything
else one can compute with.

Approximation theory connects the best-approximation rate to the
degree of smoothness of the target function.

Relations to other fields:

Origins in numerical analysis

Related to harmonic analysis (useful classes of simple functions) and
coding theory (information-theoretic perspective)

Applications in signal processing (e.g. audio, image, and video codecs)

MH3520-Ch.8, p.3

Overview of Chapter 8

1 Approximation theory

2 Banach frames and orthonormal bases

3 Approximation in sequence spaces

4 Fourier approximation (Optional)

MH3520-Ch.8, p.4

Sources for this chapter:

Pietsch (1981): Approximation spaces. Journal of Approximation
Theory 32, 115–134.

DeVore and Lorentz (1993): Constructive approximation. Springer.

Christensen (2016): An introduction to frames and Riesz bases, 2nd
edition. Birkhäuser.

MH3520-Ch.8, p.5

MH3520 Chapter 8

Part 1

Approximation theory

MH3520-Ch.8, p.6

Approximation theory

Approximation theory:

The goal is to approximate f ∈ X by h ∈ Hn ⊆ X
The approximation error is measured in X

Typically, X is a function space.

Example

X = C([0, 1]), and for each n ∈ N, Hn is a set of. . .

polynomials of degree n,

trigonometric polynomials of degree n,

piece-wise polynomials of fixed degree on n intervals,

n-term linear combination of wavelets, curvelets, ridgelets,

multi-layer perceptrons with n non-zero weights, etc.

Remark. H stands for hypothesis class. The hypothesis classes Hn are
often defined in terms of dictionaries; see next.

MH3520-Ch.8, p.7

Dictionaries and non-sparse approximation

A dictionary is a collection of elements in X.

Example

Some common dictionaries are monomials, trigonometric monomials,
spline bases, wavelet frames and, in neural network theory, dilations and
translations of the activation function.

The most common use of dictionaries is approximation by the hypothesis
class spanned by the first n dictionary items:

Definition

For non-sparse approximation from a dictionary (ϕn)n∈N, one uses the sets
Hn = Hn(ϕ) of linear combinations from the first n dictionary items:

Hn(ϕ) =

{ n∑
i=1

ciϕi : ci ∈ R
}
.

MH3520-Ch.8, p.8

Sparse approximation

We next discard the constraint that only the first n dictionary items are
allowed. However, we retain the sparsity constraint that only n coefficients
are non-zero.

Definition

For sparse approximation from a dictionary (ϕλ)λ∈Λ, one uses the sets
Hn = Σn(ϕ) of n-term linear combinations of dictionary items:

Σn(ϕ) =

{∑
λ∈Λ

cλϕλ : cλ ̸= 0 at most n times

}
.

Remark. Note that Hn = Σn(ϕ) is nonlinear; it merely satisfies
Hn +Hn ⊆ H2n. Hence, one speaks of nonlinear approximation.

MH3520-Ch.8, p.9

Sparse approximation with polynomial search

Sparse approximation requires a search through the entire dictionary for
finding the n most relevant items—algorithmically, an impossible task.

Definition

For sparse approximation with polynomial search from a dictionary
(ϕn)n∈N, one specifies a univariate polynomial π and defines

Σπn(ϕ) =

{ π(n)∑
i=1

ciϕi : cλ ̸= 0 at most n times

}
.

Searching through π(n) dictionary items is implementable but can still be
quite costly. Improvements are studied in compressed sensing.

MH3520-Ch.8, p.10

Example: dictionaries in image processing

Real-world images (top) can be expressed in terms of dictionaries of
simpler image elements (bottom). [Dahlke, Fig. 5.1–3]

MH3520-Ch.8, p.11

Quasi-norms

Technical detail: For some of the ‘norms’ which naturally occur in
approximation theory, the triangle inequality holds merely up to a constant:

Definition

A quasi-norm on a linear space X is a function ∥ · ∥ : X → [0,∞) s.t.

Non-degeneracy: ∥x∥ = 0 if and only if x = 0,

Absolute homogeneity: ∥λx∥ = |λ|∥x∥, and

Quasi-triangle inequality: ∥x+ y∥ ≤ C
(
∥x∥+ ∥y∥

)
, for some C ≥ 1.

Example

For any measure space (Ω,F , µ) and separable Banach space B, the space
Lp(Ω, B) with p ∈ (0, 1) carries the quasi-norm

∥f∥Lp(Ω) =

(∫
Ω
∥f∥pµ

)1/p

.

MH3520-Ch.8, p.12

Quasi-normed spaces as metric spaces

The p-th power of the Lp quasi-norm satisfies the triangle inequality. This
is a general feature:

Lemma

There exists an equivalent quasi-norm, still denoted by ∥ · ∥, such that

∥x+ y∥p ≤ ∥x∥p + ∥y∥p, where p := (1 + log2C)
−1.

Remark. Thus, a quasi-normed space is a metric vector space, and
completeness is well defined. However, local convexity fails, in general.

MH3520-Ch.8, p.13

Approximation error

Standing assumption.

(X, ∥ · ∥X) is a quasi-normed space

{0} = H0 ⊆ H1 ⊆ H2 ⊆ . . . are subsets of X

We write H as a short-hand for (Hn)n∈N.

Definition

For any n ∈ N, the n-th approximation error of f ∈ X from Hn is

En(f) := inf
h∈Hn

∥f − h∥X .

Remark.

To specify X and H, we also write En(f,X,H).

E0(f) = ∥f∥X , and En(f) is decreasing in n.

We next quantify how quickly En(f) decays to zero.

MH3520-Ch.8, p.14

Approximation rate

We focus on polynomial approximation rates:

Definition

The approximation rate of a set Y ⊆ X is defined as

a∗(Y) := sup
{
α > 0 : sup

f∈Y
sup
n∈N

nαEn(f) <∞
}
.

For a single f ∈ X, we set a∗(f) := a∗({f}).

Remark.

To specify X and H, we also write a∗(Y,X,H).

a∗(f) = α iff En(f) = O(n−β) for all β < α and no β > α.

MH3520-Ch.8, p.15

Approximation space

We next consider the set of all f ∈ X with approximation rate α:

Definition

For any approximation rate α ∈ (0,∞), the approximation space
Aα(X,H) consists of all f ∈ X such that

∥f∥Aα(X,H) := sup
n≥1

nαEn−1(f) <∞.

Remark. The notation suggests that this is a norm or quasi-norm. This is
indeed the case under mild conditions; see next.
This implies, ∀n ≥ 1, En−1(f) ≤ nα∥f∥Aα(X,H)

MH3520-Ch.8, p.16

Approximation quasi-norm

Standing assumption.

(X, ∥ · ∥X) is a quasi-normed space

{0} = H0 ⊆ H1 ⊆ H2 ⊆ . . . are subsets of X

There exists a constant c ∈ N such that for all n ∈ N and λ ∈ R,

λ ·Hn ⊆ Hn, Hn +Hn ⊆ Hcn.

Lemma

Aα(X,H) is a linear quasi-normed space. Moreover, if X is normed and
Hn are linear, then Aα(X,H) is normed.

MH3520-Ch.8, p.17

Approximation quasi-norm: proof

Proof.

Absolute homogeneity of ∥ · ∥Aα(X,H) follows from

En(λf) = |λ|En(f).

The quasi-triangle inequality for ∥ · ∥Aα(X,H) follows from

Ecn(f + g,H) = inf
h∈Hcn

∥f + g − h∥X

≤ C inf
h,k∈Hn

∥f − h∥X + ∥g − k∥X = C
(
En(f,H) + En(g,H)

)
.

This implies that Aα(X,H) is a linear quasi-normed space.

X normed and Hn linear implies c = C = 1, and one gets a norm.

MH3520-Ch.8, p.18

Embeddings and completeness

Lemma

Aα(X,H) ⊆ Aβ(X,H) ⊆ X with continuous embeddings if α > β.

Proof. The Aα(X,H) quasi-norm is monotonic in α and dominates the
quasi-norm in X because ∥f∥X = E0(f).

Lemma

Aα(X,H) is complete if X is complete.

Proof.

Let (fm) be Cauchy in Aα(X,H).

Then, the Aα(X,H)-norm of all fm’s is bounded by some M .

If X is complete, fm converges in X to some f .

Then, the Aα(X,H)-norm of f is also bounded by M .

MH3520-Ch.8, p.19

Representation and denseness

I’ll next show some more advanced properties of approximation spaces to
highlight the elegance of the construction.

Theorem (Representation)

f ∈ Aα(X,H) if and only if it can be represented by fn ∈ H2n such that

f =
∑
n∈N

fn, sup
n∈N

2αn∥fn∥X <∞.

The infimum of the RHS over all representations (fn) of f defines an
equivalent quasi-norm on Aα(X,H).

Corollary (Denseness)⋃
n∈NHn is dense in Aα(X,H).

MH3520-Ch.8, p.20

Iteration and interpolation

Theorem (Iteration)

Aα(Aβ(X,H), H) = Aα+β(X,H).

Interpolation is a method of assigning to spaces X and Y an intermediate
space (X,Y)θ,p parameterized by θ ∈ (0, 1) and p ∈ (0,∞].

Example (
C([0, 1]), C1([0, 1])

)
θ,∞ = Cθ([0, 1]),(

Lp([0, 1]),W
1,p([0, 1])

)
θ,p

=W θ,p([0, 1]).

Theorem (Interpolation)(
Aα(X,H), Aβ(X,H)

)
θ,∞ = A(1−θ)α+θβ(X,H).

MH3520-Ch.8, p.21

Direct and inverse estimates

A typical task in approximation theory is to investigate for some
quasi-normed subspace Y of X (think of Hölder or Sobolev functions)
whether. . .

a direct estimate holds:

∥ · ∥Aα(X,H) ≲ ∥ · ∥Y , implying that Y ⊆ Aα(X,H),

or an inverse estimate holds:

∥ · ∥Y ≲ ∥ · ∥Aα(X,H) implying that Aα(X,H) ⊆ Y.

The terminology has historical reasons: direct estimates are shown by
constructing good approximations for any given f ∈ Y , whereas inverse
estimates involve some reverse-engineering of this process.

MH3520-Ch.8, p.22

Questions to answer for yourself / discuss with friends

Repetition: Recall the definitions of approximation error,
approximation rate, and approximation space.

Check your understanding: Is Aα(X,H) large for large or small α?
Similarly for H?

Check your understanding: What’s the approximation rate of
Aα(X,H)?

Check your understanding: Is the set Σn(ϕ), which consists of n-term
linear combinations in the dictionary ϕ, a linear space?

MH3520-Ch.8, p.23

MH3520 Chapter 8

Part 2

Banach frames and orthonormal bases

MH3520-Ch.8, p.24

What are good dictionaries?

A good dictionary should provide continuous operations for translating
functions f ∈ X into dictionary coefficients (ck) ∈ E:

Definition

Let X be a Banach space, and let E be a Banach space of real-valued
sequences. A Banach frame for X with respect to E is given by

Analysis: A continuous linear operator A : X → E, and

Synthesis: A continuous linear operator S : E → X, such that

Reconstruction: the relation S ◦A = IdX must hold.

Remark:

S is surjective but may be non-injective; several coefficient sequences
(ck) ∈ E may represent the same function f ∈ X.

A is injective but may be non-surjective; for instance, A could select
particularly sparse coefficient sequences (ck).

Every separable Banach space has a Banach frame.
MH3520-Ch.8, p.25

What are good sequence spaces?

The definition of Banach frames is very general. To be of practical use,
the sequence space must be ‘nice’. Here is a minimal requirement.

Definition

The sequence space E is called nice4 if for all sequences a and b,

∀n|an| ≤ |bn| and b ∈ E =⇒ a ∈ E and ∥a∥E ≤ ∥b∥E ,
b ∈ E =⇒ lim

n→∞
∥b− 1{1,...,n}b∥E = 0.

Remark. These are very mild conditions, which are met by all classical
sequence spaces ℓp but not for ℓ∞.

4Own definition; it means that E is solid and has the unit vectors as Schauder basis.
MH3520-Ch.8, p.26

Now, we have some good dictionaries

Banach frames with nice sequence spaces are good dictionaries:

Theorem

Let A : X → E and S : E → X be a Banach frame, for a nice sequence
space E with unit vectors ek, k ∈ N. Then, ϕk := S(ek) is a dictionary,
also known as frame, and one has an atomic decomposition

∀f ∈ X : f =
∑
k∈N

ckϕk,

with coefficients ck := e∗k(A(f)) depending continuously on f .

Proof.

c =
∑
k∈N

e∗k(c)ek, f = SAf = S

(∑
k∈N

e∗k(Af)ek

)
=
∑
k∈N

e∗k(Af)︸ ︷︷ ︸
ck

Sek︸︷︷︸
ϕk

.

Remark. We will see further good properties of such dictionaries later on.
MH3520-Ch.8, p.27

Some overly small and overly large dictionaries

Here’s what happens when the dictionary is too small:

Example

If the span of the dictionary is not dense in X, then some f ∈ X cannot
be approximated by linear combinations of dictionary items.

And here is what happens when the dictionary is too large:

Example

If the dictionary itself is dense in X, then any f ∈ X can be approximated
to arbitrary accuracy by 1-term linear combinations. However, this one-hot
encoding needs lots of storage and cannot be implemented algorithmically.

MH3520-Ch.8, p.28

Bases are overly large dictionaries

Definition

A basis of a vector space is a linearly independent subset which spans all
of the vector space.

Remark.

Every vector space has a basis (by the lemma of Zorn).

Only finite linear combinations of basic elements are allowed. This is
problematic in infinite dimensions.

Example

Every basis in an infinite-dimensional Banach space is uncountable.

Thus, bases are even worse than dense dictionaries: they are way too big.

MH3520-Ch.8, p.29

Orthonormal bases are good dictionaries

Definition

An orthonormal basis in a Hilbert space is a countable set of orthonormal
vectors with dense linear span.

Lemma

An orthonormal basis provides an isometric isomorphism from the Hilbert
space to ℓ2. In particular, it is a Banach frame.

Remark. In this sense, ℓ2 is the only separable Hilbert space.

Proof. Let (bn) be an orthonormal basis in a Hilbert space X.

Set A : X → ℓ2, Af(n) := ⟨f, bn⟩
Then A is an isometric isomorphism.

Its inverse S = A−1 is then also an isometric isomorphism.

MH3520-Ch.8, p.30

Examples of orthonormal bases

Example

The trigonometric monomials are an orthonormal basis in L2([0, 1]).

Example

The Haar wavelet system is an orthonormal basis in L2([0, 1]).

MH3520-Ch.8, p.31

Examples of Banach frames

Example

The Gabor system is a Banach frame in L2(R) but not an orthonormal
basis.

Remark. The Gabor system performs a time-frequency analysis, also
known as short-time Fourier transform, which computes an amplitude for
each time and each frequency.

MH3520-Ch.8, p.32

Approximation by Banach frames

Assumption. Banach frame A : X → E, S : E → X, where E is a nice
sequence space with unit vectors (ek), and associated frame ϕ = S(ek).

Theorem

For any α ∈ (0,∞) and f ∈ X,

∥f∥Aα(X,H(ϕ)) ≲ ∥Af∥Aα(E,H(e)),

and similarly for Σ or Σπ in place of H.

Remark.

In words: if Af is well approximated by finite sequences, then f is
well approximated by finite linear combinations of dictionary items.
This reduces approximation in function spaces to approximation in
sequence spaces.

Proof for H (and similarly for Σ and Σπ):

En(f,X, H(ϕ)) = En(SAf,X, SH(e)) ≤ ∥S∥En(Af,E, H(e)).

The last step is from the natural construction.
MH3520-Ch.8, p.33

Approximation by Banach frames

Summarized in terms of approximation rates, the result reads as:

Corollary

For any α ∈ (0,∞) and Y ⊆ X,

a∗(Y,X, H(ϕ)) ≥ a∗(A(Y), E, H(e)).

Remark.

In words: for any Banach frame, the approximation rate in the
function space is at least the approximation rate in the sequence space

Equality holds when A = S−1. For instance, this is the case for
orthonormal bases, seen as Banach frames with an ℓ2 sequence space.

It also holds for sparse approximation Σ or Σπ in place of H.

MH3520-Ch.8, p.34

Questions to answer for yourself / discuss with Friends

Repetition: What is a Banach frame, and what is an orthonormal
basis?

Check your understanding: Are the elements of an orthonormal basis
linearly independent? What about Banach frames?

Discussion: What is better: large or small frames?

Transfer: How could Banach frames be useful for numerical
computation?

Discussion: Have you encountered examples of orthonormal bases
Banach frames elsewhere?

MH3520-Ch.8, p.35

MH3520 Chapter 8

Part 3

Approximation in sequence spaces

MH3520-Ch.8, p.36

Approximation in sequence spaces

Overview

We look at sparse and non-sparse approximation in sequence spaces.

The motivation is that any result for sequence spaces transfers to
function spaces via Banach frames.

Loosely speaking, we get weighted ℓp spaces as approximation spaces.

You will see the beauty of it when you discover how the same
principles are at work not only in sequence spaces but (via Banach
frames) also in many well-known function spaces.

Technical detail

So far, we have measured the approximation error in ℓ∞, but some
computations are easier in ℓq with finite q.

For instance, q = 2 works well for approximation in ℓ2 or, equivalently,
in a Hilbert space with a chosen orthonormal basis.

MH3520-Ch.8, p.37

Sequence spaces

Sequences are merely functions defined on N. For example:

Definition

For any q ∈ [0,∞] and any measure µ on (N, 2N),

ℓq(µ) := Lq(µ).

If no measure is specified, it is understood to be the counting measure.

Standing assumption.

α ∈ (0,∞) and q ∈ (0,∞]

µ :=
∑

n δn/n is a weighted counting measure

e1, e2, e3, . . . are the unit vectors in sequence space RN

{0} = H0 ⊆ H1 ⊆ H2 ⊆ . . . are subsets of a quasi-normed space X
such that for all λ and some c: λ ·Hn ⊆ Hn and Hn +Hn ⊆ Hcn.

MH3520-Ch.8, p.38

Auxiliary inequalities

We will frequently use the following two elementary inequalities.

Lemma

If (an) is a non-negative monotonically decreasing sequence, then

∥(nαan)∥ℓq ≍ ∥(2α(n−1)a2n−1)∥ℓq .

Proof: easy, by direct comparison.

MH3520-Ch.8, p.39

Hardy’s inequality

Lemma (Hardy’s inequality)

If (an) is a non-negative sequence and bn ≤ ∥(1{n,n+1,... }an)∥ℓp , then∥∥(2αnbn)∥∥ℓq ≲ ∥∥(2αnan)∥∥ℓq .
Proof. By monotonicity in p, it suffices to consider p < q. Then, there is
r > 0 such that p/q + p/r = 1. Choose β ∈ (0, α). Then, Hölder’s
inequality yields

bn ≤ ∥(1{k≥n}2
βkak2

−βk)∥ℓp ≤ ∥(1{k≥n}2
βkak)∥ℓq∥(1{k≥n}2

−βk)∥ℓr
≲ ∥(1{k≥n}2

βkak)∥ℓq2−βn.

Therefore, by interchanging summation over n and k, one obtains∥∥(2αnbn)∥∥ℓq ≲ ∥∥(2(α−β)n∥(1{k≥n}2
βkak)∥ℓq)

∥∥
ℓq

=
∥∥(2βkak∥(2(α−β)n

1{k≥n})∥ℓq)
∥∥
ℓq
≲
∥∥(2βkak2(α−β)k)

∥∥
ℓq
.

MH3520-Ch.8, p.40

Approximation spaces with summability parameter

Definition

The approximation space Aα
q (X,H) with approximation rate α and

summability parameter q consists of all f ∈ X such that

∥f∥Aα
q (X,H) := ∥(nαEn−1(f))∥ℓq(µ) <∞.

Remark. Everything is similar to before:

Special case: Aα = Aα
∞.

Lexicographic ordering: Aα
q ⊆ Aβ

r iff α > β or α = β and q ≤ r.

Iteration: Aα
q (A

β
r (X,H), H) = Aα+β

q (X,H).

Interpolation:
(
Aα

q (X,H), Aβ
r (X,H)

)
θ,s

= A
(1−θ)α+θβ
s (X,H).

MH3520-Ch.8, p.41

Non-sparse approximation

Theorem

The non-sparse approximation space Aα
q (ℓp, H(e)) coincides with the Besov

space bαq (ℓp) of sequences c with finite quasi-norm

∥c∥bαq (ℓp) :=
∥∥(nα∥1{n,n+1,... }c∥ℓp)

∥∥
ℓq(µ)

≍
∥∥(2α(n−1)∥1{2n−1,...,2n−1}c∥ℓp)

∥∥
ℓq
.

For p = q, ∥c∥bαp (ℓp) ≍ ∥(nαcn)∥ℓp is equivalent to a weighted ℓp norm.

Remark.

All Besov spaces are defined this way: p-norm at the fine level,
followed by weighted q-norm at the coarse level.
We may use the ’standard’ notation, bαp,q
The next optional reading section shows a famous theory related. Let
ϕ be Fourier series Hypothesis in [0, 1]d:
Aα

q (Lp([0, 1]
d), H(ϕ)) ≡ Bαd

q (Lp([0, 1]
d))

MH3520-Ch.8, p.42

Non-sparse approximation: proof

Proof.

Thanks to a) the monotonicity of the approximation error and b)
Hardy’s inequality,

∥c∥Aα
q (ℓp)

=
∥∥(nαEn−1(c)∥ℓp)

∥∥
ℓq(µ)

=
∥∥(nα∥1{n,n+1,... }c∥ℓp)

∥∥
ℓq(µ)

a)≍
∥∥(2α(n−1)∥1{2n−1,2n−1+1,... }c∥ℓp)

∥∥
ℓq

b)≍
∥∥(2α(n−1)∥1{2n−1,...,2n−1}c∥ℓp)

∥∥
ℓq

= ∥c∥bαq (ℓp).

For p = q, the last line reads as

∥c∥pbαp (ℓp) =
∑∞

n=1

∑2n−1
k=2n−1

∣∣2α(n−1)ck
∣∣p

≍∑∞
n=1

∑2n−1
k=2n−1

∣∣kαck∣∣p =∑∞
n=1

∣∣nαcn∣∣p = ∥(nαcn)∥pℓp .
MH3520-Ch.8, p.43

Non-increasing rearrangement

For sparse approximation, it is useful to reorder a given sequence c by
decreasing absolute values:

Definition

The non-increasing rearrangement c∗ of a sequence c is the sequence |c|
permuted in non-increasing sequence order.

Remark. Here is why this is important: As the best-approximation from Σn
picks the n most significant values of a sequence,

En(c, ℓ∞, Σ(e)) = c∗n+1.

MH3520-Ch.8, p.44

Sparse approximation

Theorem

The sparse approximation space Aα
q (ℓp, Σ(e)) is the Lorentz space ℓr,q with

r := 1/(α+ 1/p), which by definition consists of all sequences c with

∥c∥ℓr,q =
∥∥(n1/rc∗n)∥∥ℓq(µ) ≍ ∥∥(2(n−1)/rc∗2n−1)

∥∥
ℓq
<∞

Remark.

For q = r, the Lorentz space ℓr,q is simply ℓr, and the summability
parameter r := 1/(α+ 1/p) determines the approximation rate α.

As Hn(e) ⊆ Σn(e), the non-sparse approximation space is embedded in
the sparse approximation space.

Take-away. For any α− < α, by lexicographic ordering,

∥c∥ℓ1/(α−+1/p)
≲ ∥c∥Aα(ℓp,Σ(e)) ≲ ∥c∥ℓ1/(α+1/p)

.

MH3520-Ch.8, p.45

Sparse approximation: proof

Proof.

As an intermediate step, one has ℓp = A
1/p
p (ℓ∞, Σ(e)) because

∥c∥ℓp = ∥c∗∥ℓp = ∥(n1/pc∗n)∥ℓp(µ)
= ∥(n1/pEn−1(c))∥ℓp(µ) = ∥c∥A1/p

p (ℓ∞,Σ(e))
.

Therefore, by the iteration theorem,

∥c∥Aα
q (ℓp,Σ(e))

= ∥c∥
Aα

q (A
1/p
p (ℓ∞,Σ(e)),Σ(e))

≍ ∥c∥
A

α+1/p
q (ℓ∞,Σ(e))

= ∥(nα+1/pEn−1(c))∥ℓq(µ) = ∥(nα+1/pc∗n)∥ℓq(µ) = ∥c∥ℓr,q .

MH3520-Ch.8, p.46

Sparse approximation with polynomial search

For polynomial-depth search, one picks the n largest values among the
first π(n) values of the sequence:

Theorem

The sparse-with-polynomial-search approximation space Aα(ℓp, Σ
π(e)) with

π(n) := ns for some s ∈ (0,∞) contains the space of all sequences c with
finite quasi-norm

∥c∥Aα
q (ℓp,Σ

π(e)) ≲ ∥c∥Aα
q (ℓp,Hπ(e))

+ ∥c∥Aα
q (ℓp,Σ(e))

= ∥c∥
b
α/s
q (ℓp)

+ ∥c∥ℓ1/(α+1/p),q
<∞.

Proof. For any such c,

Approximation from Hπ(n)(e) incurs an error of order O(nα), and

For the resulting sequence, whose ℓ1/(α+1/p),q norm is at most that of
c, approximation from Σn(e) incurs an error of order O(nα).

MH3520-Ch.8, p.47

Approximation rates

Summarized in terms of approximation rates, our results read as:

Corollary

The approximation rates of F ⊆ ℓp, with π(n) := ns for some s > 0, are:

a∗(F, ℓp, H(e)) ≥ α if sup
c∈F
∥(nαcn)∥ℓp <∞,

a∗(F, ℓp, Σ(e)) ≥ α if sup
c∈F
∥c∥ℓ 1

α+1/p

<∞,

a∗(F, ℓp, Σπ(e)) ≥ α if sup
c∈F
∥(nα/scn)∥ℓp + ∥c∥ℓ 1

α+1/p

<∞.

Thus, in the end, all we need are weighted ℓp spaces. . .

Then the take-away is that high approximation rates correspond to
heavy weights or stringent summability conditions.

MH3520-Ch.8, p.48

Questions to answer for yourself / discuss with friends

Repetition: How does ‘regularity’ of a sequence translate into sparse
or non-sparse approximation rates?

Check your understanding: Does the space ℓp increase or decrease in
p? What about Lp([0, 1])? What about Lp(R)?

Transfer: What are the implications for approximation by Banach
frames?

MH3520-Ch.8, p.49

MH3520 Chapter 8

Part 4

Fourier approximation (Optional)

MH3520-Ch.8, p.50

Fourier approximation

Overview

Fourier approximation is approximation by trigonometric polynomials.

It is a classical topic in approximation theory, where the scale of
approximation space dovetails nicely with the scale of Besov space.

Here, it serves as a motivating and introductory example.

It is most elegantly formulated for complex-valued functions.

Main results

We use the Fourier transform as a Banach frame, which maps
function to sequences.

In sequence space, high approximation rates correspond to heavy
weights or stringent summability conditions.

In function space, this translates to high smoothness.

MH3520-Ch.8, p.51

Fourier basis and Fourier transform

Standing assumption.

All function spaces are complex-valued unless mentioned otherwise.
We fix d ∈ N, α ∈ [0,∞), p, q ∈ (0,∞], and a norm ∥ · ∥ on Rd.

Lemma

L2([0, 1]d) has an orthonormal basis of trigonometric monomials

ϕk(x) = e2πi⟨k,x⟩, x ∈ [0, 1]d, k ∈ Nd
0,

hence a Banach frame. We call ∥k∥ the degree of the monomial.

Proof. Orthogonality is easily verified by hand, and denseness of the linear
span follows from Stone–Weierstrass (Banach algebra).

Definition

The analysis operator of the Banach frame is called Fourier transform

F : L2([0, 1]d)→ ℓ2(Nd
0), F(f)n = ⟨f, ϕk⟩L2([0,1]d).

MH3520-Ch.8, p.52

Univariate trigonometric monomials

0 1
-1

1

k = 0

0 1
-1

1

k = 1

0 1
-1

1

k = 2

Real parts = even trigonometric monomials x 7→ cos(2πkx)

0 1
-1

1

k = 1

0 1
-1

1

k = 2

0 1
-1

1

k = 3

Imaginary parts = odd trigonometric monomials x 7→ sin(2πkx)

MH3520-Ch.8, p.53

Besov spaces

Definition

The Besov space Bα
q (Lp([0, 1]

d)) consists of function f ∈ Lp([0, 1]
d) with

finite quasi-norm

∥f∥Bα
q (Lp([0,1]d)) =

∥∥(nα∥F−1
1{∥·∥≥n−1}Ff∥Lp([0,1]d))

∥∥
ℓq(µ)

≍
∥∥(2α(n−1)∥F−1ψn−1Ff∥Lp([0,1]d))

∥∥
ℓq
,

where F is the Fourier transform, and ψn : Nd
0 → {0, 1} form a

circular/annular partition of unity (see next slide).

Remark. All Besov norms are defined this way: p-norm at the fine level,
weighted q-norm at the coarse level.

MH3520-Ch.8, p.54

Tiling of the frequency domain

Besov spaces use a circular/annular tiling of the frequency domain:

1 =
∑∞

n=0ψn,

ψ0 = 1{k : ∥k∥<1},

ψn = 1{k : 2n−1≤∥k∥<2n}.

For the 1-norm, ∥k∥ = k1 + · · ·+ kd is the total degree .

For the ∞-norm, ∥k∥ = max{k1, . . . , kd} is the maximal degree.

Any choice is ok because all norms in finite dimension are equivalent.

MH3520-Ch.8, p.55

Fourier approximation

Theorem

The approximation space Aα
q (Lp([0, 1]

d), H(ϕ)) coincides with the Besov

space Bαd
q (Lp([0, 1]

d)).

Remark.

Amazingly, Besov regularity coincides with approximation capability.

There is a curse of dimensionality (i.e., adverse dependence on d).

One obtains a real-valued version if ϕn’s are replaced by cosines (or
sines).

MH3520-Ch.8, p.56

Fourier approximation: proof

Proof. Set µ :=
∑

n δn/n.

As approximation in X := Lp([0, 1]) by Hn(ϕ) sets the first n
frequencies to zero, and frequencies are counted starting from zero,

En(f) = ∥F−1
1{n,n+1,... }Ff∥X , and

E2d(n−1)(f) = ∥F−1(ψn + ψn+1 + . . .)Ff∥X .
By a) the monotonicity of En(f) and b) Hardy’s inequality,

∥f∥Aα
q (X,H(ϕ))

def
=
∥∥(nαEn−1(f))

∥∥
ℓq(µ)

≍ ∥f∥X +
∥∥(nαEn(f))

∥∥
ℓq(µ)

a)≍ ∥f∥X +
∥∥(2αd(n−1)E2d(n−1)(f))

∥∥
ℓq(µ)

= ∥f∥X +
∥∥(2αd(n−1)∥F−1(ψn + ψn+1 + . . .)Ff∥X

∥∥
ℓq

≍
∥∥(2αd(n−1)∥F−1(ψn−1 + ψn + . . .)Ff∥X

∥∥
ℓq

b)≍
∥∥(2αd(n−1)∥F−1ψn−1Ff∥X

∥∥
ℓq

= ∥f∥Bαd
q (X).

MH3520-Ch.8, p.57

Besov spaces with p = q

For p = q we get an Lp space with a weight applied in the Fourier domain:

Lemma

For p = q, one has ∥f∥Bα
p (Lp([0,1]d)) ≍ ∥F−1(1 + ∥ · ∥α)Ff∥Lp([0,1]d).

Proof of the lemma.

Swap ℓp summation and Lp integration to get

∥f∥Bα
q (Lp([0,1]d)) =

∥∥F−1∥2α(n−1)ψn−1∥ℓpFf
∥∥
Lp([0,1]d)

.

Use 2α(n−1)ψn−1(k) ≍ (1 + ∥k∥α)ψn−1(k) and
∑

n ψn = 1.

Weight
∑

n 2
α(n−1)ψn−1(k) Weight 1 + ∥k∥α

MH3520-Ch.8, p.58

Relations to other function spaces

Besov spaces were invented to create order in the messy zoo of functions.

Theorem

The following embeddings and isomorphisms hold:

Cα([0, 1]d) ⊆ Bα
∞(L∞([0, 1]d)) with equality for α /∈ N.

Lp([0, 1]
d) = B0

p(Lp([0, 1]
d)).

Hα([0, 1]d) =Wα,2([0, 1]d) = Bα
2 (L

2([0, 1]d)).

Proof for Hα([0, 1]) = Bα
2 (L

2([0, 1])) and α ∈ N only:As the Fourier
transform is an isometry L2([0, 1])→ ℓ2 and (Ff ′)k = 2πik(Ff)k,

∥f∥2Bα
2 (L

2([0,1])) = ∥F−1(1 + ∥ · ∥α)Ff∥2L2([0,1])

= ∥(1 + ∥ · ∥α)Ff∥2ℓ2 ≍ ∥Ff∥2ℓ2 + ∥(kα(Ff)k)∥2ℓ2
≍ ∥f∥2L2([0,1]) + ∥ dαf∥2L2([0,1]) = ∥f∥2Hα([0,1]).

MH3520-Ch.8, p.59

Approximation rates

Summarized in terms of approximation rates, our result reads as:

Corollary

The approximation rate of F by trigonometric monomials satisfies

a∗(Y,L2([0, 1]d), H(ϕ)) ≥ α if sup
f∈Y
∥f∥Hαd([0,1]d) <∞,

a∗(Y, L∞([0, 1]d), H(ϕ)) ≥ α if sup
f∈Y
∥f∥Cαd([0,1]d) <∞,

Remark.

This relates Sobolev or Hölder smoothness to the approximation rate.

Little is known for approximations from Σ(ϕ).

MH3520-Ch.8, p.60

Questions to answer for yourself / discuss with friends

Repetition: At what rate can Hölder Cα or Sobolev Hα functions be
approximated by trigonometric polynomials?

Check your understanding: Are Besov spaces Bα
q (Lp) ordered

lexicographically?

Check your understanding: How bad is the curse of dimensionality: if
n trigonometric polynomials are sufficient in dimension 1, do you need
dn, nd or dn trigonometric polynomials in dimension d?

Discussion: Can you give an example of a function which can/cannot
be approximated by trigonometric polynomials at rate, say, 3?

MH3520-Ch.8, p.61

MH3520:Mathematics of Deep Learning

Chapter 9

Splines and approximation by wide networks

MH3520-Ch.9, p.1

Context

Last chapter:

Approximation theory: quantitative control over the approximation
error

This chapter:

Approximation theory for neural networks

Application: neural networks are at least as good as splines

Next chapter:

Approximation theory for deep neural networks

MH3520-Ch.9, p.2

Overview

Size of neural networks:

We will quantify the size of a network by counting the number of
neurons, weights, etc.

This is well defined for neural networks but not for perceptrons
because of over-parameterization

Dictionary learning:

This is a general transfer-of-approximation result, which says:

If perceptrons approximate a dictionary well, and the dictionary
approximates a function class well, then perceptrons approximate the
function class well.

Spline approximation:

Splines are known to approximate a whole scale of functions well.

We already know them—it’s the scale of Besov functions.

The implication is: anything splines can do, networks can do as well.
MH3520-Ch.9, p.3

Overview of Chapter 9

1 Spaces of neural networks

2 Approximation spaces of multi-layer perceptrons

3 Dictionary learning

4 Spline approximation

5 Dictionary learning with splines

MH3520-Ch.9, p.4

Sources for this chapter:

Petersen (2022): Neural Network Theory. Lecture Notes, University
of Vienna. pc-petersen.eu/Neural_Network_Theory.pdf

Gribonval Kutyniok Nielsen Voigtlaender (2022): Approximation
spaces of deep neural networks. Constructive approximation 55:1,
259–367.

MH3520-Ch.9, p.5

pc-petersen.eu/Neural_Network_Theory.pdf

MH3520 Chapter 9

Part 1

Spaces of neural networks

MH3520-Ch.9, p.6

Definition of neural networks

Definition

A neural network with L layers is a family of matrix-vector tuples

Φ =
(
(AL, bL), . . . , (A1, b1)

)
,

where N0, . . . , NL ∈ N, Al ∈ RNl−1×Nl , and bl ∈ RNl for l ∈ {1, . . . , L}.

Remark. According to this definition, neural networks are the coefficients
of multi-layer perceptrons. Let’s make this precise. . .

MH3520-Ch.9, p.7

Realizations of neural networks

Definition

The realization of a neural network

Φ =
(
(AL, bL), . . . , (A1, b1)

)
,

with activation function ρ : R→ R is the multi-layer perceptron

R(Φ) = TL ◦ ρ ◦ TL−1 ◦ · · · ◦ ρ ◦ T1,

where ρ is understood to act component-wise, and where

∀l ∈ {1, . . . , L} : Tl : RNl−1 → RNl , Tl(x) = Alx+ bl.

Remark.

Every multilayer perceptron is the realization of a neural network.

However, several neural networks might have the same realization.

This is called over-parameterization.
MH3520-Ch.9, p.8

Size of a neural network

Let T·U0 be the number of non-zero entries of a matrix or vector.

Definition

For any neural network Φ, in the above notation,

The depth or number of layers is L,

The architecture is S := (NL, . . . , N0) and width max{NL, . . . , N0},
The input dimension is N0, and the output dimension is NL,

The number of neurons is NL + · · ·+N0

The number of hidden neurons is N := NL−1 + · · ·+N1,

The number of weights is W := TALU0 + · · ·+ TA1U0

The number of biases is B := TbLU0 + · · ·+ Tb1U0

The number of coefficients is C :=W +B

The size of the coefficients is the supremum K of |Al,i,j |, |bl,i|

These notions are ill defined for perceptrons due to over-parameterization.

MH3520-Ch.9, p.9

Parallelization

We’ll next discuss several operations on neural networks.

Definition

The parallelization of f : Rd → Rm and g : Rd → Rn is the function

(f, g) : Rd → Rm+n, (f, g)(x) = (f(x), g(x)).

Remark. In parallelization, the inputs of f and g are shared. When they
are not, one speaks of full parallelization (x, y) 7→ (f(x), g(y)).

Lemma

For any neural networks Φ1,Φ2 with depth L and input dimension d, there
exists a neural network P (Φ1,Φ2) such that

R(P (Φ1,Φ2)) = (R(Φ1), R(Φ2)).

Moreover, P (Φ1,Φ2) can be chosen to have depth L, input dimension d,
N(P (Φ1,Φ2)) ≤

∑
N(Φi), and W (P (Φ1,Φ2)) ≤

∑
W (Φi).

MH3520-Ch.9, p.10

Parallelization: visual proof

Two networks (top) and their parallelisation (bottom) [Petersen]

MH3520-Ch.9, p.11

Parallelisation: proof

Proof.

The networks Φ1 and Φ2 are of the form

Φ1 =
(
(A1

L, b
1
L), . . . , (A

1
1, b

1
1)
)
, Φ2 =

(
(A2

L, b
2
L), . . . , (A

2
1, b

2
1)
)
.

Their full parallelization (with unshared inputs) is the neural network

FP (Φ1,Φ2) :=

(((
A1

L 0

0 A2
L

)
,
(

b1L
b2L

))
, . . . ,

((
A1

1 0

0 A2
1

)
,
(

b11
b21

)))
.

Their parallelization has a modified bottom-most layer:

P (Φ1,Φ2) :=

(((
A1

L 0

0 A2
L

)
,
(

b1L
b2L

))
, . . . ,

((
A1

1

A2
1

)
,
(

b11
b21

)))
.

MH3520-Ch.9, p.12

Composition

Definition

The composition of f : Rd → Rk and g : Rk → Rl is the function

g ◦ f : Rd → Rl, g ◦ f(x) = g(f(x)).

Lemma

For any neural networks Φ2 and Φ1 with input dimension of Φ2 equal to
output dimension of Φ1, there exists a neural network Φ2 • Φ1 such that

R(Φ2 • Φ1) = R(Φ2) ◦R(Φ2).

Moreover, Φ2 • Φ1 can be chosen s.t. L(Φ2 • Φ1) = L(Φ2) + L(Φ1)− 1,
N(Φ2 • Φ1) ≤ N(Φ2) +N(Φ1), and
W (Φ2 • Φ1) ≤W (Φ1) + max{N(Φ1), d}W (Φ2).

MH3520-Ch.9, p.13

Composition: visual proof

Two neural networks (top) and their composition (bottom) [Petersen]

MH3520-Ch.9, p.14

Composition: proof

Proof.

The networks Φ2 and Φ1 are of the form

Φ2 =
(
(A2

L2
, b2L2

), . . . , (A2
1, b

2
1)
)
, Φ1 =

(
(A1

L1
, b1L1

), . . . , (A1
1, b

1
1)
)
.

Define Φ2 • Φ1 as the following network with L1 + L2 − 1 layers:(
(A2

L2
, b2L2

), . . . , (A2
2, b

2
2),

(A2
1A

1
L1
, A2

1b
1
L1

+ b21), (A
1
L1−1, b

1
L1−1), . . . , (A

1
1, b

1
1)
)
.

Distinguishing the cases L(Φ1) = 1 versus L(Φ1) > 1 leads to

TA2
1A

1
LU0 ≤ TA2

1U0max
i

Te⊤i A
1
LU0 ≤ TA2

1U0max{N(Φ1), d}.

MH3520-Ch.9, p.15

Affine transformations

Corollary

Let Φ be a neural network with input dimension d and output dimension
k. Then, for any affine maps P = (A, b) : Rd1 → Rd and
Q = (B, c) : Rk → Rk1 , there exists a neural network Ψ such that

R(Ψ) = Q ◦R(Φ) ◦ P.

Moreover, Ψ can be chosen such that L(Ψ) = L(Φ), N(Ψ) ≤ N(Φ), and
W (Ψ) ≤ maxjTBejU0 ·W (Φ) ·maxiTe⊤i AU0.

Proof:

Define Ψ as
((B, c)) • Φ • ((A, b)).

Use the estimates

TBAU0 ≤ max
j

TBejU0TAU0, TBAU0 ≤ TBU0max
i

Te⊤i AU0.

MH3520-Ch.9, p.16

Linear combinations

Corollary

For any networks Φ1, . . . ,Φn with equal depths, input dimensions, and
output dimensions, and for any c1, . . . , cn ∈ R, there exists a neural
network Ψ such that

R(Ψ) =
∑
i

ciR(Φi).

Moreover, Ψ can be chosen such that L(Ψ) = L(Φi), N(Ψ) ≤∑iN(Φi),
and W (Ψ) ≤∑iW (Φi).

Proof:

Let k be the output dimension of Φi and define

A = (c1 Idk ... cn Idk) ∈ Rk×(kn), b =
(0

...
0

)
∈ Rk.

Define the neural network Φ by

Φ = ((A, b)) • P (Φ1, . . . ,Φn).

MH3520-Ch.9, p.17

Questions to Answer for Yourself / Discuss with Friends

Repetition: What are neural networks, and how do they differ from
multi-layer perceptrons?

Check your understanding: Is T·U0 a metric?

Discussion: How could one define the width, depth, number of
neurons, etc. of a multi-layer perceptron?

Discussion: Can you think of any further operations on neural
networks?

Transfer: What measure of a network’s complexity is related to the
number of floating point operations needed to compute the output
given the input?

MH3520-Ch.9, p.18

MH3520 Chapter 9

Part 2

Approximation spaces of multi-layer perceptrons

MH3520-Ch.9, p.19

Hypothesis classes of multi-layer perceptrons

Standing assumption.

X is a quasi-normed space of functions Rd ⊇ Ω→ Rk

Activation function ρ, number of layers L

Definition

Wn(X, ρ, L) denotes the elements of the function space X which are
realizations of neural networks Φ with activation function ρ, at most n
non-zero weights, and exactly L layers.

Remark. The letter W relates to weights.

MH3520-Ch.9, p.20

Approximation spaces of multi-layer perceptrons

Lemma

The hypothesis classes Wn(X, ρ, L) give rise to quasi-normed
approximation spaces

Aα
q (X, W(X, ρ, L)).

Proof. The hypothesis classes satisfy

λWn(X, ρ, L) ⊆ Wn(X, ρ, L),

Wn(X, ρ, L) + Wn(X, ρ, L) ⊆ W2n(X, ρ, L).

MH3520-Ch.9, p.21

Number of weights versus number of coefficients

Coefficients are either weights or biases, i.e., C =W +B. Counting
weights is equivalent to counting coefficients:

Theorem

If Cn(X, ρ, L) denotes multi-layer perceptrons with at most n coefficients
(including both weights and biases), then

Aα
q (X, C(X, ρ, L)) = Aα

q (X, W(X, ρ, L)).

Proof. This is a consequence of the following lemma.

Lemma

For any network Φ with output dimension k, there exists a compressed
network Ψ with the same realization and number of layers such that

N(Ψ) ≤ N(Φ), W (Ψ) ≤W (Ψ) +B(Ψ) ≤ k + 2W (Φ).

MH3520-Ch.9, p.22

Number of weights versus number of coefficients: proof

Sketch of proof.

Assume for contradiction that the claim fails for some network Φ, and
assume Φ to have a minimal number of neurons.

If every non-input neuron of Φ is connected to at least one neuron in
the layer below, then TblU0 ≤ Nl ≤ TAlU0. Thus, B(Φ) ≤W (Φ),
and the claim holds true for Ψ = Φ, a contradiction.

Thus, at least one neuron of Φ is not connected to any layer
underneath. Intuitively, one can remove it without changing R(Φ), a
contradiction to the minimality of Φ’s number of neurons.

When removing the neuron, some care is needed to distinguish
between hidden neurons versus output neurons and between layers of
size 1 versus size greater than 1.

MH3520-Ch.9, p.23

Number of weights versus number of neurons

Counting weights is inequivalent to counting hidden neurons for L > 2,
i.e., unless there is only a single hidden layer:

Theorem

Let Nn(X, ρ, L) denote multi-layer perceptrons with at most n hidden
neurons. Then, there are continuous embeddings

Aα
q (X, W(X, ρ, L)) ⊆ Aα

q (X, N(X, ρ, L)) ⊆ Aα/2
q (X, W(X, ρ, L)).

If L = 2, then α/2 can be replaced by α.

Proof.

Let d be the input dimension and k the output dimension.

Counting weights in comparison to hidden neurons reveals that

Wn(X, ρ, L) ⊆ Nn(X, ρ, L) ⊆ Wn2+(d+k)n(X, ρ, L).

For layer L = 2, the term n2 on the right-hand side can be
omitted.

MH3520-Ch.9, p.24

Questions to Answer for Yourself / Discuss with Friends

Repetition: How are approximation spaces of neural networks
defined?

Check your understanding: Is the set of neural networks with fixed
architecture a vector space? What about the realizations of these
networks?

Check your understanding: Is the set of neural network with fixed
number of weights a vector space? What about the realizations of
these networks?

Discussion: We have been counting weights, coefficients, and hidden
neurons. Can you think of other interesting measures of complexity?

MH3520-Ch.9, p.25

MH3520 Chapter 9

Part 3

Dictionary learning

MH3520-Ch.9, p.26

Dictionary learning

Standing assumptions.

X is a quasi-normed space of functions Rd ⊇ Ω→ Rk

ϕ = (ϕλ)λ∈Λ is a dictionary in X.

Definition

For sparse approximation from a dictionary (ϕλ)λ∈Λ, one uses the sets
Hn = Σn(ϕ) of n-term linear combinations of dictionary items:

Σn(ϕ) =

{∑
λ∈Λ

cλϕλ : cλ ̸= 0 at most n times

}
.

Theorem

Assume for some fixed depth L and number of weights W that

∀λ ∈ Λ : ϕλ ∈ WW (X, ρ, L).
Then, for any α ∈ (0,∞) and q ∈ (0,∞],

Aα
q (X, Σ(ϕ)) ⊆ Aα

q (X, W(X, ρ, L)).
MH3520-Ch.9, p.27

Dictionary learning: discussion

Aα
q (X, Σ(ϕ)) ⊆ Aα

q (X, W(X, ρ, L)).

Assumptions.

WW (X, ρ, L) are networks with fixed depth and number of weights.

The assumption that ϕλ can be approximated by such networks is
quite strong but is satisfied for certain basis splines (and wavelets).

Conclusions.

Any approximation rate for the dictionary yields an approximation
rate for the networks.

In this result, the hypothesis classes are n-term linear combinations of
dictionary items and realizations of networks with at most n weights.

In words: If multi-layer perceptrons approximate a dictionary well, and the
dictionary approximates a signal class well, then multi-layer perceptrons
approximate the signal class well.

MH3520-Ch.9, p.28

Dictionary learning: proof

Proof.

Consider ci ∈ R and λi ∈ Λ. By assumption, ϕi ∈ WW (X, ρ, L).

As scalar multiplication is a continuous operation in X and does not
increase the number of weights, ciϕi ∈ WW (X, ρ, L).

As addition is a continuous operation in X, which increases the
number of weights at most n-fold, c1ϕ1 + · · ·+ cnϕn ∈ WnW (X, ρ, L).

Thus, we have shown that Σn(ϕ) ⊆ WnW (X, ρ, L).

Consequently, viewing n as a free (dummy) variable, one has

Aα
q (X, Σn(ϕ)) ⊆ Aα

q (X, WnW (X, ρ, L))

= Aα
q (X, WnW (X, ρ, L))

= Aα
q (X, Wn(X, ρ, L)).

MH3520-Ch.9, p.29

Questions to answer for yourself / discuss with friends

Repetition: What are the assumptions and conclusions of the
dictionary learning theorem?

Check your understanding: Would dictionary learning work with
non-sparse instead of sparse dictionary approximation?

Check your understanding: Would dictionary learning work if
ϕλ ∈ Aβ(X, W(X, ρ, L)) for some β?

Discussion: Do you think dictionary learning happens in reality when
training neural networks?

MH3520-Ch.9, p.30

MH3520 Chapter 9

Part 4

Spline approximation

MH3520-Ch.9, p.31

History and applications of splines

Origins in boat building, standard in computer graphics and industrial
design.

MH3520-Ch.9, p.32

Univariate basis splines

A spline is a piecewise polynomial. Univariate means in one variable.

Definition

The cardinal basis spline of degree s− 1 ∈ N is defined as

Ns(x) :=
1

(s− 1)!

s∑
l=0

(−1)l
(
s

l

)
(x− l)s−1

+ for x ∈ R

where (·)+ := max{0, ·}.
Basis splines are defined by dilations and translations:

Na,b,s(x) := Nk

(
asx− b

)
, a ∈ N, b ∈ Z, x ∈ R.

Splines are linear combinations of basis splines.

Remark. The cardinal basis spline Ns is the s-fold convolution
1[0,1) ⋆ · · · ⋆ 1[0,1) of the indicator function of the unit interval.

MH3520-Ch.9, p.33

Univariate basis splines

0 2
0

1

s = 2

0 3
0

1

s = 3

0 4
0

1

s = 4

The cardinal basis spline Ns (blue) and some of its translates (gray).

0 1
0

1

a = 1

0 1
0

1

a = 2

0 1
0

1

a = 4

Basis splines of degree 2 for different dilations a.

MH3520-Ch.9, p.34

Multivariate basis splines

A multi-variate function is a function of several variables.

Multi-variate splines are defined as products of univariate splines.

Definition

The multivariate basis splines of degree s− 1 ∈ N in d ∈ N variables are

N d
a,b,s(x) =

d∏
i=1

Na,bi,s(xi), x ∈ Rd, a ∈ N, b ∈ Zd.

Multi-variate splines are linear combinations thereof.

Remark. To be precise, s− 1 is the coordinate degree of the spline, i.e.,
the maximal power of each coordinate xi. The total degree is higher.

MH3520-Ch.9, p.35

Dyadic splines

To get nested hypothesis classes of splines, we use dyadic grids:

Definition

The dyadic basis splines of degree s− 1 on [0, 1]d are the functions

N d
2a,b,s : [0, 1]

d → R, a ∈ N0, b ∈ {1− s, . . . , 2as− 1}d.

The dictionary of dyadic basis splines is the enumeration of dyadic basis
splines ordered lexicographically, i.e., first by a and then by b.

Remark. The range of indices a and b is chosen such that the dyadic basis
splines, seen as functions on [0, 1]d, are linearly independent.

MH3520-Ch.9, p.36

Spline approximation

Assumption.

ϕ is the dictionary of dyadic basis splines of degree s− 1 on [0, 1]d, in
lexicographic order.

αd ∈ (0, s) and p, q ∈ (0,∞].

Theorem

There is a continuous embedding

Bαd
q (Lp([0, 1]

d)) ⊆ Aα
q (Lp([0, 1]

d), H(ϕ))

which is an isomorphism if αd < s− 1 + min{1, p−1}.

Take-away. Any function in the Hölder space Cαd or Sobolev space Hαd

has spline best-approximation rate α or higher, if the spline degree is
chosen sufficiently high.

MH3520-Ch.9, p.37

Spline approximation: discussion

Conclusion:

The spline degree does not influence the approximation rate, as long
as it is sufficiently high.

There is a curse of dimensionality: if f is Cα, then the approximation
rate α/d decreases in d.

Intuition for d = 1:

If f ∈ Cα([0, 1]) with α ∈ (0, 1], then the first-order modulus of
smoothness of f satisfies the bound |f(y)− f(x)| ≲ |y − x|α.

Thus, on a grid of step size 1/n, f can be approximated by piecewise
constant functions at rate n−α.

For f ∈ Ck+α([0, 1]), one approximates the k-th derivative f (k) by
piecewise constant functions and integrates k times.

MH3520-Ch.9, p.38

Spline approximation: discussion

Conditions:

The condition αd < s makes sure that the Bαd
q norm can be

expressed in terms of the modulus of smoothness of order s.

The stronger condition αd < s− 1 + min{1, p−1} is needed only for
the inverse estimate, and only for dyadic grids.

For uniform grids, the condition is not needed because problems at
dyadic recurring grid points are averaged out, but then the hypothesis
classes are not nested.

Implementation:

In practice, one constructs a near-best approximation, which is
optimal up to a multiplicative constant.

One such near-best approximation is an interpolatory spline, which
can be obtained by solving a linear equation, whose coefficients are
the values of f, . . . , f (k) at some interior points of the grid.

MH3520-Ch.9, p.39

Questions to answer for yourself / discuss with friends

Repetition: What are splines, basis splines, and cardinal basis splines?

Check your understanding: At what rate can Hölder Cα or Sobolev
Hα functions be approximated by splines?

Check your understanding: What is the highest approximation rate
that can be achieved via the theorem for piecewise linear splines?

Transfer: What is spline interpolation? Does it differ from spline
approximation?

MH3520-Ch.9, p.40

MH3520 Chapter 9

Part 5

Dictionary learning with splines

MH3520-Ch.9, p.41

Higher-order sigmoidal activation functions

Definition

A function ρ : R→ R is called sigmoidal of order r ∈ N, if ρ ∈ Cr−1(R)
and the following three conditions are met:

ρ(x)
xr → 0 for x→ −∞ .

ρ(x)
xr → 1 for x→∞ .

|ρ(x)| ≲ (1 + |x|)r for x ∈ R .

Example

Sigmoidal functions are sigmoidal of order 0.

The ReLu function ρ1(x) = (x)+ is sigmoidal of order 1.

The power unit ρr(x) = (x)r+ is sigmoidal of order r ∈ N.

Smoothing the r-th power unit near x = 0 results in a sigmoidal
function of order r.

MH3520-Ch.9, p.42

Dictionary learning with splines

Standing assumptions.

d ∈ N, p, q ∈ (0,∞], X = Lp([0, 1]d), and α ∈ (0,∞).

ρ is sigmoidal of order r ∈ N. Either r = d = 1 and α < 2 or r ≥ 2.

Theorem

There exists L ∈ N such that there is a continuous embedding

Bαd
q (X) ⊆ Aα

q (X, W(X, ρ, L)).

Remark.

This is our first quantitative approximation result for neural networks!

It suffers from the same curse of dimensionality as spline approximation.

There is no inverse estimate because perceptrons are more general
than splines (at least for d > 1).

One may use splines of degree s− 1 ≥ 1 if αd < s, in which case
L = ⌈log2(d)⌉+ ⌈max{logr(s− 1), 1}⌉+ 1 will do (see proof).

MH3520-Ch.9, p.43

Dictionary learning with splines: proof

Proof.

Let ϕ be the dictionary of basis splines of degree s− 1.

If s > αd, spline approximation satisfies

Bαd
q (X) ⊆ Aα

q (X, H(ϕ)) ⊆ Aα
q (X, Σ(ϕ)).

If r = d = 1, set s = 2. Then ϕλ are hat functions, and

∀λ ∈ Λ : ϕλ ∈ W3(X, ρ, 2).

If r ≥ 2, the next proposition shows for all s ∈ N and some L,W ∈ N

∀λ ∈ Λ: ϕλ ∈ WW (X, ρ, L).

Either way, by the dictionary learning theorem,

Aα
q (X, Σ(ϕ)) ⊆ Aα

q (X, W(X, ρ, L)).

MH3520-Ch.9, p.44

Approximating multivariate splines

Standing assumptions, in addition to the previous ones:

ϕ = (ϕλ)λ∈Λ is the dictionary of dyadic basis splines of degree s− 1

s ≥ 2, and ρ is sigmoidal of order r ≥ 2

Proposition

There exists L,W ∈ N such that

∀λ ∈ Λ : ϕλ ∈ WW (C([0, 1]d), ρ, L).

Remark. This verifies the conditions of the dictionary learning theorem for
p =∞ and hence for all p.

MH3520-Ch.9, p.45

Approximating multivariate splines: proof

Proof:

We will show in the next lemma that the univariate cardinal basis
spline Ns satisfies for some W and all K > 0 that

Ns ∈ WW
(
C([−K,K]), ρ, ⌈max{logr(s− 1), 1}⌉+ 1

)
.

We will show in the lemma thereafter that multiplication
Md : Rd ∋ (x1, . . . , xd) 7→ x1 · · ·xd ∈ R satisfies for some W that

Md ∈ WW
(
C([0, 1]d), ρ, ⌈log2(d)⌉+ 1

)
.

As basis splines ϕλ are translations of products of dilated and
translated cardinal basis splines Ns, it follows for all λ ∈ Λ that

ϕλ ∈ WW
(
C([0, 1]d), ρ, ⌈log2(d)⌉+ ⌈max{logr(s− 1), 1}⌉+ 1

)
.

MH3520-Ch.9, p.46

Approximating univariate splines

Lemma

There exist constants W ∈ N and L := ⌈max{logr(s− 1), 1}⌉+ 1 such
that the univariate cardinal basis spline Ns satisfies

∀K > 0 : Ns ∈ WW (C([−K,K]), ρ, L).

Remark:

Recall that Ns is a sum of translated power units ρs−1(x) := (x)s−1
+ .

Thus, it suffices to consider ρs−1 in place of Ns.

Moreover, recall that ρ is sigmoidal of order r. We will see that some
dilations of ρ uniformly approximate the power unit ρr.

Thus, the lemma really is about changing the power of power units
from r to s− 1.

MH3520-Ch.9, p.47

Approximating univariate splines: proof

Proof: It suffices to show the lemma for ρs−1 in place of Ns.

Certain dilations of ρ converge to ρr:

∀x ∈ R : ρr(x) = lim
λ→∞

λ−rρ(λx).

This limit is locally uniform in x, and one obtains

∀K > 0 : ρr ∈ W1(C([−K,K]), ρ, 2).

Thus, for n := ⌈max{logr(s− 1), 1}⌉ and L := n+ 1, one has

∀K > 0 : ρr ◦ · · · ◦ ρr︸ ︷︷ ︸
n times

∈ W1(C([−K,K]), ρ, L)

Let p := rn − (s− 1) and W := p+ 1. As the p-th derivative is the
limit of p-th order difference quotients,

∀K > 0 : ρs−1 = ∂px(ρr ◦ · · · ◦ ρr) ∈ WW (C([−K,K]), ρ, L).
MH3520-Ch.9, p.48

Approximating products

Lemma

There exist constants W ∈ N and L := ⌈log2(d)⌉+ 1 such that
multiplication Md : Rd ∋ (x1, . . . , xd) 7→ x1 · · ·xd ∈ R satisfies

∀K > 0 : Md ∈ WW (C([−K,K]d), ρ, L).

[Petersen]

Remark: The closure is not needed if ρ = ρ2 is the power unit of order 2.
MH3520-Ch.9, p.49

Approximating products: proof

Proof:

Without loss of generality, d = 2n for some n ∈ N.

Multiplication of 2 variables can be represented as

2x1x2 = (x1+x2)
2
++(−x1−x2)2+−(x1)2+−(−x1)2+−(x2)2+−(−x2)2+.

In terms of the power unit ρ2 = (x)2+ this reads as

∃W ∈ N : ∀K > 0: M2 ∈ WW (C(R2), ρ2, 2).

Parallelization and concatenation achieves multiplication of 2n

variables:

∃W ∈ N : ∀K > 0: M2n ∈ WW (C(R2), ρ2, n+ 1).

By the previous lemma, ρ2 can be approximated by 2-layer networks
with activation function ρ and bounded number of weights,

∃W ∈ N : ∀K > 0: M2n ∈ WW (C(R2), ρ, n+ 1).

MH3520-Ch.9, p.50

Questions to answer for yourself / discuss with friends

Repetition: What are higher-order sigmoidal activation functions and
how are they related to power units and splines?

Repetition: At what rate can Hölder Cα or Sobolev Hα functions be
approximated by perceptrons?

Check your understanding: At what rate can multiplication
Md : Rd ∋ (x1, . . . , xd) 7→ x1 · · ·xd ∈ R be approximated by
perceptrons with second-order sigmoidal activation function?

Check your understanding: What does the multiplication network
look like when the number of variables is not a power of 2?

Discussion: Is it possible to build multiplication networks with
activation function x 7→ x2?

MH3520-Ch.9, p.51

MH3520:Mathematics of Deep Learning

Chapter 10

Analyticity and approximation by deep networks

MH3520-Ch.10, p.1

Context

Last chapters:

Lower bounds on network approximation rates via dictionaries of
splines

This chapter:

Approximation properties of deep instead of wide networks

Next week:

Wrap-up and coaching for the final exam.

MH3520-Ch.10, p.2

Analyticity and approximation by deep networks

Main result:

Analytic functions can be approximated by deep ReLU networks at an
exponential rate.

Previously, with finite depth, we have seen only polynomial rates.

Idea of proof:

ReLU networks are piecewise linear.

The number of pieces is polynomial in the width but exponential in
the depth.

With exponentially many linear pieces, one can approximate the
square function exponentially well.

This exponential approximation rate extends to monomials, then
polynomials, and then real-analytic functions.

MH3520-Ch.10, p.3

Overview of Chapter 10

1 Approximation by deep ReLU networks

2 Operations on ReLU networks

3 ReLU representation of saw-tooth functions

4 ReLU approximation of multiplication

5 ReLU approximation of analytic functions

MH3520-Ch.10, p.4

Sources for this chapter:

E, Wang (2018): Exponential convergence of the deep neural
approximation for analytic functions. Science China Mathematics 61,
pp. 1733–1740. arXiv:1807.00297

Gribonval, Kutyniok, Nielsen, Voigtlaender (2022): Approximation
spaces of deep neural networks. Constructive approximation 55:1,
259–367.

Petersen (2022): Neural Network Theory. Lecture Notes, University
of Vienna. pc-petersen.eu/Neural_Network_Theory.pdf

MH3520-Ch.10, p.5

pc-petersen.eu/Neural_Network_Theory.pdf

MH3520 Chapter 10

Part 1

Approximation by deep ReLU networks

MH3520-Ch.10, p.6

ReLU activation function

Throughout this chapter, we focus on ReLU networks.

Definition

The rectified linear unit (ReLU) activation function is defined as

ρ1(x) = max{0, x}, x ∈ R.

8 6 4 2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Remark: The ReLU function is not sigmoidal but discriminatory.

MH3520-Ch.10, p.7

Hypothesis classes of deep networks

Remark:

Previously, the focus was on wide networks of bounded depth.

For ReLU networks, the focus is on deep networks of bounded width.

Definition

Ln(X, ρ,N) denotes the realizations of networks with n layers,
activation function ρ, and at most N = max{N1, . . . , Nn−1} neurons
per hidden layer, seen as elements of the function space X.

LMn (X, ρ,N) denotes the subset of realizations of neural networks
with coefficients bounded in absolute value by M .

Remark.

L stands for layers (similarly to W for weights and N for neurons).

Previously, we used N for the number of hidden neurons. Now, it is
the maximal number of neurons per hidden layer, aka. the width.

MH3520-Ch.10, p.8

Real-analytic functions

Definition

A function f : (−r, r)d → R is real-analytic if it is given by a power series

f(x) =
∑
k∈Nd

akx
k, x ∈ (−r, r)d,

for some coefficients (ak)k∈Nd . In symbols, f ∈ Cω((−r, r)d).

Remark:

The power series converges absolutely on (−r, r)d, i.e.,

∀x ∈ (−r, r)d :
∑
k∈Nd

|ak||x||k| <∞, where |k| = k1 + · · ·+ kd.

On [−r, r]d, the power series may or may not converge absolutely.

MH3520-Ch.10, p.9

Examples of real-analytic functions

Example

Polynomials and trigonometric functions exp, sin, cos etc. are real analytic
on R. The logarithm log is real analytic on (0,∞).

Example

Sums, products, and compositions of real-analytic functions are real
analytic. The reciprocal of a non-zero real-analytic function is real
analytic. The inverse of a real-analytic function with invertible derivative is
real analytic.

Counter-example

Bump functions (i.e., compactly supported functions) cannot be real
analytic unless they are identically zero. Non-smooth functions cannot be
real analytic.

MH3520-Ch.10, p.10

Approximating real-analytic functions

The main result of this chapter is that real-analytic functions admit
exponential ReLU approximation rates:

Theorem

Let r > 1, and let f : (−r, r)d → R be real-analytic with

f(x) =
∑
k∈Nd

akx
k, ∥f∥ω :=

∑
k∈Nd

|ak|r|k| <∞,

and let X = C([−1, 1]d). Then, there exists c > 0 such that

En(f,X, L
8∥f∥ω(X, ρ1, 2d+ 10)) ≲ e−cn1/(d+2)

.

Remark:

This is approximation by deep networks with bounded width and
bounded coefficients.

The theorem is proven in Part 5, building upon results of Parts 2–4.
MH3520-Ch.10, p.11

Questions to answer for yourself / discuss with friends

Repetition: What is a real-analytic function? At what rate can it be
approximated by networks, and what is the network’s architecture?

Check your understanding: For what r > 0 is the power series∑∞
k=1(−1)k+1xk convergent? The limit is a well-known function –

which one?

Check your understanding: If you control the number of layers L and
the width N , do you also control the number of non-zero weights W?
What’s the relation?

Background: Can you remember the proof that the ReLU function is
discriminatory?

Background: What is the difference between smooth, real-analytic,
and holomorphic functions?

MH3520-Ch.10, p.12

MH3520 Chapter 10

Part 2

Operations on ReLU networks

MH3520-Ch.10, p.13

Representation of the identity

Lemma

For each d, L ∈ N, the identity on Rd can be realized as a ReLU network:

Idd = R(ΦId
d,L) ∈ L1L(C(Rd,Rd), ρ1, 2d).

Proof:

This follows from the algebraic relations

ρ1(x)− ρ1(−x) = x, ρ1(ρ1(x)) = ρ1(x).

For L = 1 we use the network ((Idd, 0)).

For L ≥ 2, we use the network(((Idd
− Idd

)
, 0
)
, (Id2d, 0), . . . (Id2d, 0),

(
(Idd,− Idd), 0

))
.

MH3520-Ch.10, p.14

Lack of sparsity in network compositions

Problem. Composition of networks involves matrix multiplication, which
scales quadratically in the number of non-zero weights.

Example

The single-layer networks

Φ2 :=

(((1
...
1

)
,
(0

...
0

)))
, Φ1 :=

((
(1, . . . , 1), 0

))
have n non-zero weights, but their composition has n2 non-zero weights:

Φ2 • Φ1 =

(((1 ··· 1
...
...

...
1 ··· 1

)
,
(0

...
0

)))
.

MH3520-Ch.10, p.15

Solution: sparse composition

Top to bottom: two neural networks, their sparse composition, and their
composition. [Petersen]

MH3520-Ch.10, p.16

Solution: sparse composition

Definition

The sparse composition of a neural network Φ2 with input dimension d
and a neural network Φ1 with output dimension d is defined as

Φ2 ⊙ Φ1 := Φ2 • ΦId
d,2 • Φ1,

where ΦId
d,2 is the 2-layer ReLU representation of the identity on Rd.

Remark: Similarly, using ΦId
d,L with L > 2, one can define sparse

compositions of increased depth.

MH3520-Ch.10, p.17

Properties of sparse composition

Lemma

Sparse composition of networks realizes composition of functions, i.e.,

R(Φ2 ⊙ Φ1) = R(Φ2) ◦R(Φ1).

The number of layers L, coefficient bound M , maximal number of neurons
N per hidden layer, and number of non-zero weights W satisfy

L = L2 + L1, M ≤ max{M2,M1},
N ≤ max{N2, 2d,N1}, W ≤ 2(W2 +W1).

Proof. Counting exercise.

Remark: Most importantly, the number of weights increases linearly rather
than quadratically. Moreover, the coefficients remain bounded.

MH3520-Ch.10, p.18

Skip connections

Remark: Recall that a network Φ = ((AL, bL), . . . , (A1, b1)) can be
represented as a computational graph with edges corresponding to the
non-zero entries of the matrices Ai.

Definition

A skip connection is an edge between non-adjacent layers in the
computational graph of a network.

Remark:

Networks with skip connections have been highly successful in image
recognition.

The ReLU representation of the identity allows one to rewrite
networks with skip connections as networks without skip connections.

MH3520-Ch.10, p.19

Examples of networks with skip connections

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

57
2

x
57

2

28
4²

64

128

256

512

57
0

x
57

0

56
8

x
56

8

28
2²

28
0²

14
0²

13
8²

13
6²

68
²

66
²

64
²

32
²

28
²

56
²

54
²

52
²

512
10

4²

10
2²

10
0²

20
0²

30
²

19
8²

19
6²

39
2

x
39

2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

1024

512 256

256 128

64128 64 2

conv 1x1

U-Net: convolutional network for image segmentation. Skip connections
are represented by gray arrows. [Ronneberger e.a.]

MH3520-Ch.10, p.20

Examples of networks with skip connections
7x

7
co

nv
, 6

4,
 /2

po
ol

, /
2

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 1
28

, /
2

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 2
56

, /
2

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 5
12

, /
2

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

av
g
po

ol

fc
 1

00
0

im
ag

e

ResNet: convolutional network for image recognition. Skip connections are
represented by curved arrows. [Schmidhuber e.a.]

MH3520-Ch.10, p.21

Deep linear combinations of networks

Deep linear combinations are linear combinations of perceptrons, which
increase the depth but not the width of the networks.

Lemma

For any networks Φ1, . . . ,Φk with input dimension d and output dimension
n, there exists a network Φ such that

R(Φ) =
∑
i

R(Φi),

and the number of layers L, coefficient bound M , and maximal number of
neurons N per hidden layer satisfy

L =
∑
i

Li, M ≤ max
i
Mi, N ≤ max

i
Ni + 2d+ 2n.

MH3520-Ch.10, p.22

Proof: deep linear combinations of networks

Proof:

Let Φsum and Φdiag be the single-layer networks realizing the maps

sum: Rd × Rn × Rn ∋ (x, y, z) 7→ (x, y + z) ∈ Rd × Rn,

diag : Rd × Rn ∋ (x, y) 7→ (x, x, y) ∈ Rd × Rd × Rn.

Then the sum with skip connections

Rd × Rn ∋ (x, y) 7→ (x,R(Φi)(x) + y) ∈ Rd × Rn

is realized by the network

Ψi := Φsum • FP
(
ΦId
d,Li

,Φi,Φ
Id
n,Li

)
• Φdiag,

where FP denotes full parallelization.

MH3520-Ch.10, p.23

Proof: deep linear combinations of networks

Let Φpr and Φins be the single-layer networks realizing the maps

pr: Rd × Rn ∋ (x, y) 7→ y ∈ Rn,

ins : Rd ∋ x 7→ (x, 0) ∈ Rd × Rn.

Then the network Φ := Φpr •Ψ1 ⊙ · · · ⊙Ψk • Φins has the desired
properties.

Remark. The idea of the proof is to express the sum by a recursion (aka.
loop), which can be expressed by networks of variable depth and fixed
width.

MH3520-Ch.10, p.24

Questions to answer for yourself / discuss with friends

Repetition: What is sparse concatenation, and how does it differ from
non-sparse concatenation?

Repetition: What are skip connections, what are they good for, and
how can they be implemented using ReLU networks?

Transfer: Are approximation spaces Aα(X, L(X, ρ1, N)) well defined?

Discussion: To what extent are the results of this part limited to
ReLU networks?

MH3520-Ch.10, p.25

MH3520 Chapter 10

Part 3

ReLU representation of saw-tooth functions

MH3520-Ch.10, p.26

ReLU representation of the hat function

Lemma

The hat function

F (x) := ρ1(2x)− 2ρ1(2x− 1) + ρ1(2x− 2)

is the ReLU realization of the network Φhat := ((A2, 0), (A1, b1)),

A2 := (1,−2, 1), A1 := (2, 2, 2)⊤, b1 := (0,−1,−2)⊤

with depth L = 2, coefficient bound M = 2, and N = 3 hidden neurons.

MH3520-Ch.10, p.27

Saw-tooth functions

Definition

For any n ∈ N, the saw-tooth function Fn is defined as Fn(x) = 0 for
x /∈ (0, 1) and

Fn(x) :=

{
2n(x− i2−n), x ∈ [i2−n, (i+ 1)2−n], i even,

2n((i+ 1)2−n − x), x ∈ [i2−n, (i+ 1)2−n], i odd.

Lemma

The saw-tooth function is the n-fold composition Fn = F ◦ · · · ◦ F of the
hat function.

Visual proof: next slide.

MH3520-Ch.10, p.28

Saw-tooth functions

x1 x2 x3

x1

x2

x3

1

1
1

1

1

1

1

1

()F1 x1

()x2

()x3

F1

F1

()F2 x1 ()x2F2 ()F2 x1

Top Left: F1, Bottom Right: F2, Bottom Left: F4.

[Figure from Petersen, Ch. 3] MH3520-Ch.10, p.29

ReLU representation of saw-tooth functions

Corollary

The saw-tooth function Fn is the ReLU realization of the n-fold
composition

Φn := Φhat • · · · • Φhat,

which has depth L = n+ 1, coefficient bound M ≤ 4, and at most N = 3
neurons per hidden layer.

Proof:

Fn is the n-fold composition of hat functions F = R(Φhat).

Φn is the n-fold composition of the networks Φhat.

MH3520-Ch.10, p.30

The role of depth

Remark: The corollary is surprising for the following reason:

Consider ReLU realizations of networks with input dimension 1, depth
L and at most N neurons per hidden layer.

For depth L = 2, these are piece-wise linear with at most 2N pieces.
(Actually, at most N + 1 pieces.)

For higher L, there are at most (2N)L−1 pieces.

These are polynomially many in N , but exponentially many in L.

Thus, saw-tooth functions can be represented very efficiently by deep
networks, but not very efficiently by shallow networks.

MH3520-Ch.10, p.31

Limits on inverse estimates

Saw-tooth functions serve as counter-examples for embeddings of network
approximation spaces in Besov spaces:

Theorem

There is no continuous embedding

Aα
q (X, L(X, ρ1, N)) ⊆ Bs

q(X), where X = Lp([0, 1]d),

for any α, s ∈ (0,∞) and p, q ∈ (0,∞], and N ≥ 3.

Remark.

An embedding of the above form is called an inverse estimate.

For unbounded depth, no such inverse estimate can hold.

Thus, certain functions are well approximated by deep networks but
badly approximated by e.g. splines or trigonometric polynomials.

MH3520-Ch.10, p.32

Limits on inverse estimates

Proof for p = q =∞:

Then, Bs
q(X) = Cs([−1, 1]d). Wlog. s < 1.

Let fk(x1, . . . , xd) = Fk(x1), for the saw-tooth function Fk.

As Fk has slope ±2k on intervals of length 2−k,

∥fk∥Cs([−1,1]d) ≥ sup
|x−y|≤2−n

2n|x− y|
|x− y|s =

2n2−n

2−ns
= 2ns.

However, as En−1(fk, X, L(X, ρ1, 3)) = 0 for all n ≥ k + 2,

∥fk∥Aα(X,Lk+1(X,ρ1,3)) ≤ (k + 2)α∥fk∥X ≲ (k + 2)α.

Thus, {k−αfk : k ∈ N} is bounded in Aα but unbounded in Cs.

MH3520-Ch.10, p.33

Questions to answer for yourself / discuss with friends

Repetition: How many saw-tooths can be generated by a ReLU
network with L layers?

Check your understanding: How would you prove that the saw-tooth
function is a composition of hat functions?

Check your understanding: Could one get smoother saw-tooths using
ρ2 instead of ρ1?

Check your understanding: What is the network approximation rate of
a single saw-tooth function? What about the set of all saw-tooth
functions?

MH3520-Ch.10, p.34

MH3520 Chapter 10

Part 4

ReLU approximation of multiplication

MH3520-Ch.10, p.35

Saw-tooth approximation of the square function

Lemma

Linear combinations of saw-tooth functions

Hn(x) := x−
n∑

k=1

Fk(x)2
−2k, n ∈ N, x ∈ R,

approximate the square function at an exponential rate:

sup
x∈[0,1]

∣∣x2 −Hn(x)
∣∣ ≤ 2−2(n+1), n ∈ N .

Remark: This makes us optimistic that, using sufficiently deep networks,
we can approximate the square function efficiently.

MH3520-Ch.10, p.36

Saw-tooth approximation of the square function

13/41/21/4

1

3/4

1/2

1/4

x2

H0

H1

H2

[Petersen]

Approximants Hn(x) := x−∑n
k=1 Fk(x)2

−2k of the square function x2.

MH3520-Ch.10, p.37

Proof: Saw-tooth approximation of the square function

Proof:

By induction, the function Hn is piecewise linear with break points
k2−n for k ∈ {0, . . . , 2n}, and Hn(x) = x2 at the breakpoints.

By convexity, Hn(x) ≥ x2 for x ∈ [0, 1].

For any x between the breakpoints ℓ := k2−n and u := (k + 1)2−n,

∣∣Hn(x)− x2
∣∣ = Hn(x)− x2 =

u− x
u− ℓ ℓ

2 +
x− ℓ
u− ℓu

2 − x2.

This quadratic function assumes its maximum at its unique critical
point x∗, and one easily verifies that

x∗ =
u+ ℓ

2
, Hn(x

∗)− (x∗)2 =
(
u− ℓ
2

)2

= 2−2(n+1).

MH3520-Ch.10, p.38

ReLU approximation of the square function

Lemma

The square function x 7→ x2 can be approximated by ReLU networks at an
exponential rate:

En+1(x
2, X, L4(X, ρ1, 5)) ≤ 2−2n, where X = C([−1, 1]).

Remark. I will show one unsuccessful but instructive attempt of proof, and
then the real proof.

MH3520-Ch.10, p.39

Attempted proof: approximating the square function

Attempted proof:

Approximate the square function by saw-tooth functions:

sup
x∈[0,1]

∣∣x2 −Hn(x)
∣∣ ≤ 2−2(n+1), Hn(x) = x−

∑
k≤n

Fk2
−2k.

Represent saw-tooths by networks and synchronize their depth:

Fk = R(Φhat • · · · • Φhat) = R(ΦId
1,n−k ⊙ Φhat • · · · • Φhat).

Take linear combinations to get networks of width proportional to n.

Alternatively, take deep linear combinations to get networks of depth
proportional to n2.

This strategy is non-recursive and sub-optimal.

MH3520-Ch.10, p.40

Proof: approximating the square function

Proof:

As before, approximate the square by saw-tooth functions:

sup
x∈[0,1]

∣∣x2 −Hn(x)
∣∣ ≤ 2−2(n+1), Hn(x) = x−

∑
k≤n

Fk2
−2k.

Recall that Fn is the n-fold composition of the hat function

F (x) := 2ρ1(x)− 4ρ1(x− 1
2) + 2ρ1(x− 1),

and note that Hn(x) = Hn−1(x)− 2−2nFn(x).

Write a recursion for (Fn, Hn):{
Fn(x) = 2ρ1(Fn−1(x))− 4ρ1(Fn−1(x)− 1

2) + 2ρ1(Fn−1(x)− 1),

Hn(x) = ρ1(Hn−1(x))− ρ1(−Hn−1(x))− 2−2nFn(x),

where the term Fn(x) on the right-hand side can be substituted by a
term involving the functions Fn−1(x) using the first equation.

MH3520-Ch.10, p.41

Proof: approximating the square function (cont.)

Each recursive step corresponds to a network layer:(
Fn
Hn

)
= A2ρ1

(
A1

(
Fn−1

Hn−1

)
− b1

)
,

A2(x) =
(

2 −4 2 0 0
−2−2n+1 2−2n+2 2−2n+1 1 −1

)
,

A1(x) =

(
1 0
1 0
1 0
0 1
0 −1

)
, b1 =

(0
1/2
1
0
0

)
.

Thus, using non-sparse concatenation •, the iteration for Hn with
F0(x) = |x| and H0(x) = |x| can be realized by a ReLU network of
depth n+ 2, width 5, and weights bounded by 4.

MH3520-Ch.10, p.42

ReLU approximation of multiplication

By polarization, approximation of the square can be turned into
approximation of products:

Theorem

Multiplication (x, y) 7→ xy can be approximated by ReLU networks at an
exponential rate:

En+1(xy,X, L
8(X, ρ1, 10)) ≤ 2−2n−1, where X = C([−1, 1]2).

Proof. Use xy = (x+y
2)2 − (x−y

2)2 and the previous lemma.

Remark: On domains x, y ∈ [−K,K], the weight bound changes to a
quadratic polynomial in K.

MH3520-Ch.10, p.43

Questions to answer for yourself / discuss with friends

Repetition: How can multiplication be approximated by ReLU
networks at an exponential rate?

Check your understanding: Why is a secant approximation of the
square function worst half-way between the abscissas of the
intersection?

Transfer: Compare the ReLU approximation of multiplication to the
sigmoidal approximation of multiplication.

Discussion: Using coding theory, we established polynomial upper
bounds on network approximation rates. Are they in contradiction to
the exponential approximation rate established here?

MH3520-Ch.10, p.44

MH3520 Chapter 10

Part 5

ReLU approximation of analytic functions

MH3520-Ch.10, p.45

Approximating monomials

We start with an auxiliary lemma on approximation of monomials.

Lemma

Monomials can be approximated by ReLU networks at an exponential rate:
for any indices i1, . . . , ip ∈ {1, . . . , d},

Ep(n+1)(xi1 · · ·xip , L8(X, ρ1, 2d+ 10)) ≤ p2−2n−1,

where x1, . . . , xd are the coordinates in [−1, 1]d, and X = C([−1, 1]d,R).

Remark:

Via dictionary learning, this leads to optimal polynomial
approximation rates for many signal classes.

More interestingly, in contrast to our previous results, it also leads to
exponential approximation rates for real-analytic functions, including
e.g. sinusoidal functions and oscillatory textures.

MH3520-Ch.10, p.46

Proof: approximating monomials

Proof:

Multiplication with skip connections

Mi(x1, . . . , xd, y) := (x1, . . . , xd, xiy)

can be approximated in Y := C([−1, 1]d+1,Rd+1) by

R(Φi) ∈ L8n+1(Y, ρ1, 2d+ 10), ∥Mi −R(Φi)∥Y ≤ 2−2n−1.

Therefore, the desired map

prd+1 ◦Mip ◦ · · · ◦Mi1 ◦ (Idd, 1)
can be approximated in X := C([−1, 1]d,R) by the realization of

Φ :=
((

(0d 1) , 0
))
• Φip ⊙ · · · ⊙ Φi1 •

(((
Idd
0d

)
,
(
0d
1

)))
.

As R(Φi) is 1-Lipschitz and bounded by 1, using dummy variables x,

R(Φ) ∈ L8p(n+1)(X, ρ1, 2d+ 10), ∥xi1 · · ·xip −R(Φ)∥X ≤ p2−2n−1.

MH3520-Ch.10, p.47

Approximating real-analytic functions

We are now ready to prove the main theorem of Part 1:

Theorem

Let r > 1, let f : (−r, r)d → R be real-analytic with

f(x) =
∑
k∈Nd

akx
k, ∥f∥ω :=

∑
k∈Nd

|ak|r|k| <∞,

where |k| is the 1-norm, and let X = C([−1, 1]d). Then,

∃c > 0 : En(f,X, L
8∥f∥ω(X, ρ1, 2d+ 10)) ≲ e−cn1/(d+2)

.

Remark:

The strategy is simple: truncate the power series and approximate the
monomials by deep ReLU networks.

Both operations admit exponential error bounds.

MH3520-Ch.10, p.48

Approximating real-analytic functions

Proof.

We start with an auxiliary bound: The derivatives of f are given by
power series, which are absolutely converging on [−1, 1]d. Therefore,∑

k∈Nd

|ak||k| ≲ ∥f∥ω <∞.

Approximating monomials xk by ψk ∈ L8|k|(n+1)(X, ρ1, 2d+ 10) yields∥∥f −∑
|k|≤p

akψk

∥∥
X
≤
∑
|k|>p

|ak|+
∑
|k|≤p

|ak|∥xk − ψk∥X

≤ r−p
∑
|k|>p

|ak|r|k| +
∑
|k|≤p

|ak||k|2−2n−1

≲
(
r−p + 2−2n−1

)
= e−p log r + e−(2n+1) log 2.

Setting p := (2n+1)⌈log(2/r)⌉ yields an error ≲ e−cn for c := 2 log 2.

MH3520-Ch.10, p.49

Approximating real-analytic functions

There are
(
p+d
d

)
perceptrons ψk with |k| ≤ p.

Taking deep linear combinations, one obtains that∑
|k|≤p

akψk ∈ L8L(X, ρ1, 2d+ 11), where L = p(n+ 1)

(
p+ d

d

)
.

We upper-bound the depth L using the estimate dd

d! ≤
∑

k
dk

k! = ed:

L = p(n+ 1)
(p+ d) · · · (p+ 1)

d!
≤ p(n+ 1)

(p+ d

d/e

)d
≲ nd+2.

Overall, we have achieved an error ≲ e−cn with depth nd+2.

MH3520-Ch.10, p.50

Questions to answer for yourself / discuss with friends

Repetition: How can real-analytic functions be approximated by ReLU
networks at an exponential rate?

Check: Prove the inequality d! ≥ (d/e)d, which was used in the last
proof. Hint: dd/d! is a summand in the series expansion of ed.

Discussion: Can real-analytic functions be approximated by shallow
networks at an exponential rate?

Transfer: What other assumptions on the signal class besides real
analyticity might increase the approximation rate?

MH3520-Ch.10, p.51

MH3520:Mathematics of Deep Learning

Chapter 11

Harmonic analysis and approximation by wide networks

MH3520-Ch.11, p.1

Context

In spline approximation chapter:

Dictionary learning with splines: If a function can be approximated by
splines, it can be approximated at least as well by neural networks

This chapter:

Dictionary learning with wavelets and shearlets: If a function can be
approximated by wavelets or shearlets, it can be approximated at least
as well by neural networks

Next chapter:

Networks are encoders, and there are information-theoretic limits on
encoding rates

MH3520-Ch.11, p.2

Overview of Chapter 11

1 Harmonic analysis

2 Gabor analysis

3 Wavelet analysis

4 Shearlet analysis

5 Signal classes and their approximation rates

MH3520-Ch.11, p.3

Sources for this chapter:

Dahlke, De Mari, Grohs, Labate (2015): Harmonic and applied
analysis—from groups to signals. Birkhäuser.

Gribonval Kutyniok Nielsen Voigtlaender (2022): Approximation
spaces of deep neural networks. Constructive approximation 55:1,
259–367.

MH3520-Ch.11, p.4

MH3520 Chapter 11

Part 1

Harmonic analysis

MH3520-Ch.11, p.5

History of harmonic analysis

Harmonic analysis grew out of Fourier analysis: virtually any periodic
function can be represented as a weighted series of sines and cosines.

The Fast Fourier Transform computes Fourier coefficients in
logarithmic time, and people began to use it in all kind of applications
– even where it is not useful!

For instance, Fourier analysis is ill suited for describing frequency
changes over time, and local coefficient errors have global effect.

The short-time Fourier transform, also known as Gabor analysis, is an
ad-hoc solution with limited success: one restricts the Fourier
transform to a shifting time window.

The break–through came with wavelets, which use wide time windows
for low frequencies and narrow time windows for high frequencies.

Abstract harmonic analysis consolidates wavelet theory using group
representations and has led to far-reaching generalizations.

MH3520-Ch.11, p.6

Groups

Definition

A group is a tuple (G, ∗, e,−1), where G is a set and

∗ : G×G→ G is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c)
e ∈ G is a unit element, i.e., e ∗ a = a ∗ e = a.
−1 : G→ G satisfies a ∗ a−1 = a−1 ∗ a = e.

Remark.

One often calls ∗ the group multiplication and −1 the group inversion,
but these may differ from multiplication and inversion of real numbers.

One speaks of multiplicative or additive groups if ∗ is a multiplication
or addition in the ordinary sense.

MH3520-Ch.11, p.7

Examples of groups

Example (Real numbers and non-zero real numbers)

R+ is an additive group, and R× := R \ {0} is a multiplicative group.

Example (General linear group)

The set GL(Rd) of invertible d× d matrices is a multiplicative group and
is called general linear group.

Example (Affine group)

The set Aff (Rd) of invertible affine functions Rd → Rd is a group with
composition and inverse as group operations. In coordinates, they read as

(A1, b1) ∗ (A2, b2) = A1A2x+A1b2 + b1, (A, b)−1 = (A−1,−A−1b).

MH3520-Ch.11, p.8

Group homomorphisms

Definition

A group homomorphism is a function f : G→ H between groups G and
H such that f(a ∗ b) = f(a) ∗ f(b).

Remark.

Note: in f(a ∗ b) the multiplication is in G, whereas in f(a) ∗ f(b),
the multiplication is in H.

A group homomorphism maps the unit element to the unit element
and inverses to inverses: f(e) = e, f(a−1) = f(a)−1.

Example

The exponential map is a group homomorphism R→ R>0 because
exp(a+ b) = exp(a) exp(b).

MH3520-Ch.11, p.9

Group representations

Definition

A representation of a group G on a vector space X is a group
homomorphism π : G→ GL(X).

Remark.

Think of G as acting on X via linear transformations, i.e., every
group element defines a linear transformation of X.

In harmonic analysis, X is an L2 function space, and the linear
transformations are norm-preserving.

Example

Affine transformation is a representation

π : Aff (Rd)→ GL(L2(Rd)), π(A, b)f(x) := |detA|−1/2f
(
A−1(x− b)

)
.

MH3520-Ch.11, p.10

The harmonic analysis cookbook

Recipe

Choose a group representation π : G→ GL(L2(Rd))

Fix some gi ∈ G, which are ‘spread evenly’ over G.

Fix one (or sometimes more than one) function ψ ∈ L2(Rd), which is
called mother wavelet, analyzing function, or generator.

Use the functions π(gi)ψ as a dictionary

Result

Under suitable conditions, the dictionary is a Hilbert frame (i.e., a
Banach frame for L2(Rd) with sequence space ℓ2).

Other choices of ψ and gi lead to equivalent frames.

MH3520-Ch.11, p.11

Main uses of harmonic analysis

Analysis

A signal f ∈ L2(Rd) is analyzed to a sequence Af := (⟨f, π(gi)ψ⟩)i.

Synthesis

A coefficient sequence c is synthesized to a function Sc :=
∑

i ciϕi

ϕi := π(gi)ψ if these are an orthonormal basis. In general, ϕi are
defined as linear combinations of π(gi)ψ such that the reconstruction
relation holds.

Reconstruction

The reconstruction relation f = SAf holds.

The atomic decomposition f = limn→∞ S(1{1,...,n}Af) allows one to
truncate the coefficient sequence at high n with negligible error.

MH3520-Ch.11, p.12

Approximation spaces in harmonic analysis

Notation

Write ϕ for the frame π(gi)ψ in some canonical order.

Write e for the unit vectors in sequence space, ordered accordingly.

Non-sparse approximation

For sequences, Aα
q (ℓ

p, H(e)) is the Besov space bαq (ℓ
p).

For functions, Aα
q (L

p(Rd), H(ϕ)) coincides with {f : Af ∈ bαq (ℓ
p)}.

Sparse approximation

For sequences, Aα
q (ℓ

p, Σ(e)) is the Lorentz space ℓr,q with
r := 1/(α+ 1/p).

For functions, Aα
q (L

p(Rd), Σ(ϕ)) coincides with {f : Af ∈ ℓr,q}.

MH3520-Ch.11, p.13

Questions to answer for yourself / discuss with friends

Repetition: What is a group representation? How are group
representations used in harmonic analysis?

Check your understanding: Why is the affine representation defined
using A−1 instead of A?

Transfer: Can signal analysis or synthesis be implemented using
neural networks?

MH3520-Ch.11, p.14

MH3520 Chapter 11

Part 2

Gabor analysis

MH3520-Ch.11, p.15

Group representations in Gabor analysis

Example

Modulation is a representation

Rd ∋ a 7→ Ea ∈ GL(L2(Rd)), Eaf(x) = e2πi⟨a,x⟩f(x).

Example

Translation is a representation

Rd ∋ b 7→ Tb ∈ GL(L2(Rd)), Tbf(x) = f(x− b).

Example

Multiplication by a complex phase is a representation

R ∋ c 7→Mc ∈ GL(L2(Rd)), Mcf(x) = e2πicf(x).

MH3520-Ch.11, p.16

Heisenberg group and Schrödinger representation

We bundle up modulation, translation, and multiplication into a group
with representation on L2(Rd):

Definition

The Heisenberg group is the set G := Rd × Rd × R with multiplication

(a1, b1, c1)∗ (a2, b2, c2) :=
(
a1+a2, b1+ b2, c1+ c2− 1

2⟨a1, b2⟩− 1
2⟨a2, b1⟩

)
.

Definition

The Schrödinger representation π : G→ GL(L2(Rd)) is defined as

π(a, b, c)f :=McTbEaf.

for modulation Ea, translation Tb, and multiplication Mc.

MH3520-Ch.11, p.17

How to come up with this definition

One takes the Schrödinger representation as a starting point.

Then, one computes (a, b, c) such that

Mc1Tb1Ea1Mc2Tb2Ea2f = · · · =McTbEaf

and defines multiplication as (a1, b1, c1) ∗ (a2, b2, c2) := (a, b, c).

This automatically guarantees associativity of the multiplication.

Multiplication Mc is needed because Tb1Ea1Tb2Ea2 can be written as
TbEa only up to a multiplicative constant.

For signal analysis, Mc is irrelevant because ⟨f,McTbEaψ⟩ equals
⟨f, TbEaψ⟩ up to the constant e−2πic, independent of f, a, b.

MH3520-Ch.11, p.18

Gabor frames

Theorem

Under certain conditions on ψ ∈ L2(Rd), and for sufficiently small
α, β > 0, the dictionary

EaTbψ, a ∈ αZ, b ∈ βZ,

is a Hilbert frame for L2(Rd).

Remark.

This coincides with π(a, b, c)ψ =McTbEaψ for suitable (a, b, c).

The non-sparse approximation spaces are called modulation spaces,
and the sparse approximation spaces don’t have a name.

MH3520-Ch.11, p.19

Example of Gabor frames

Example

The Gauss function ψ(x) = e−∥x∥2/2 works well. One can think of it as a
smoothened time window.

MH3520-Ch.11, p.20

Short-time Fourier transform

The analysis operator for Gabor frames is the short-time Fourier transform.

22

A Typical Musical STFT

Hans G. Feichtinger WIENER AMALGAMS and GABOR ANALYSIS

Intensity (color-coded) of an audio signal, plotted over time (horizontal)
and frequency (vertical). [Feichtinger (2015)]

MH3520-Ch.11, p.21

Problems with the short-time Fourier transform

Top: A periodic signal consisting of 2 base frequencies with 2 pulses.
Bottom: Wide time windows (left) distinguish the base frequencies but not

the pulses, and the other way round for narrow time windows (right).

MH3520-Ch.11, p.22

Questions to answer for yourself / discuss with friends

Repetition: Describe the Heisenberg group, the Schrödinger
representation, and Gabor frames.

Check your understanding: Gabor frames involve negative frequencies.
Why? Can this be avoided?

Discussion: Is Gabor analysis related to musical scores?

Transfer: How would you implement Gabor analysis or synthesis using
neural networks?

MH3520-Ch.11, p.23

MH3520 Chapter 11

Part 3

Wavelet analysis

MH3520-Ch.11, p.24

Group representations in wavelet analysis

Example

Dilation is a representation

R× ∋ a 7→ Da ∈ GL(L2(Rd)), Daf(x) = |a|−d/2f(a−1x).

Example

Translation is a representation

Rd ∋ b 7→ Tb ∈ GL(L2(Rd)), Tbf(x) = f(x− b).

MH3520-Ch.11, p.25

Wavelet group and wavelet representation

We bundle up dilations and translations into a group with representation
on L2(Rd).

Definition

The wavelet group is the set G := R× × Rd equipped with the
multiplication

(a1, b1) ∗ (a2, b2) := (a1a2, a1b2 + b1).

Definition

The wavelet representation π : G→ GL(L2(Rd)) is defined as

π(a, b)f := TbDaf,

for dilations Da and translations Tb.

MH3520-Ch.11, p.26

Wavelet frames

Theorem

Under certain conditions on ψ, the wavelet dictionary given by

DaTbψ, a ∈ ±2Z, b ∈ Zd,

is a Hilbert frame for L2(Rd).

Remark.

The dictionary coincides with π(a, b)ψ = TbTaψ for suitable a, b.

The corresponding non-sparse approximation spaces are Besov spaces,
and the sparse approximation spaces have no name.

MH3520-Ch.11, p.27

Example of wavelet frames

Example

The Morlet wavelet works well and is given by ψ(x) = e2πi⟨c,x⟩e−∥x∥2/2, for
some fixed frequency c ∈ Zd. Typically, c = (5, . . . , 5) is used.

MH3520-Ch.11, p.28

Gabor versus wavelet analysis

Top: Gabor analysis uses a fixed time window with variable number of
oscillations. Bottom: Wavelet analysis uses large time windows for low

frequencies and small time windows for high frequencies.
[Burke Hubbard]MH3520-Ch.11, p.29

Advantage of wavelet analysis

Top: A periodic signal consisting of 2 base frequencies with 2 pulses.
Bottom: Wavelets correctly distinguish the base frequencies and the pulses.

MH3520-Ch.11, p.30

Tiling of the time–frequency domain

time

fr
eq

u
en

cy

time

fr
eq

u
en

cy
Left: Gabor frames define a uniform tiling.

Right: Wavelet frames define a non-uniform tiling.
Each frame element is concentrated in one of the rectangles.

MH3520-Ch.11, p.31

Heisenberg’s uncertainty principle

There are myriads of wavelets ψ with various pros and cons.

Ideally, one would like ψ to be localized in time and frequency, but by
Heisenberg’s uncertainty principle, there are limits to this:

Theorem

For any ψ ∈ L2(R) with ∥ψ∥L2(R) = 1,

min
x0∈R

∥(x− x0)ψ(x)∥2L2(R) min
ξ0∈R
∥(ξ − ξ0)Fψ(ξ)∥2L2(R) ≥

1

16π2
.

Remark. In quantum physics, the left-hand side represents the variance of
measuring the location times the variance of measuring the momentum.

MH3520-Ch.11, p.32

Application in image compression

[en.wikipedia.org/wiki/JPEG_2000]

JPEG2000 uses Cohen–Daubechies–Feauveau wavelets. Top left: wavelet
coefficients at scale a = 1. Neighboring squares: differences to scale

a = 1/2. Neighboring squares: differences to scale a = 1/4.
MH3520-Ch.11, p.33

en.wikipedia.org/wiki/JPEG_2000

Questions to answer for yourself / discuss with friends

Repetition: Describe the wavelet group, its representation on L2(R),
and wavelet frames.

Discussion: Is wavelet analysis related to musical scores?

Transfer: How would you implement wavelet analysis or synthesis
using neural networks?

MH3520-Ch.11, p.34

MH3520 Chapter 11

Part 4

Shearlet analysis

MH3520-Ch.11, p.35

Shearing and parabolic dilation

Shearlets are anisotropic, i.e., direction-sensitive. It would be natural to
use rotations, but these are problematic numerically and mathematically,
and we replace them by shear transformations.

Example

Parabolic dilation is a representation of R× := R \ {0} on L2(R2):

R× ∋ a 7→ Pa ∈ GL(L2(R2)), Paf(x) = |a|−3/4f
((a 0

0 ±√a

)−1
x
)
,

where ±
√
a := − sign(a)

√
|a| is the signed square root.

Example

Shearing is a representation of R on L2(R2):

R ∋ b 7→ Sb ∈ GL(L2(R)), Sbf(x) = f
((

1 b
0 1

)−1
x
)
.

MH3520-Ch.11, p.36

Shear group and its representation

We bundle up parabolic dilations, shear transformations, and translations
into a group with representation on L2(R2).

Definition

The shear group is the set G := R× × R× R2 equipped with the
multiplication

(a1, b1, c1) ∗ (a2, b2, c2) :=
(
a1a2, b1 + b2

√
|a1|, c1 +

(
1 b1
0 1

)(a 0
0 ±√a

)
c2

)
.

Definition

The shear representation π : G→ GL(L2(R2)) is defined as

π(a, b, c)f = TcSbPaf,

for parabolic dilations Pa, shear transformations Sb, and translations Tc.

MH3520-Ch.11, p.37

Shearlet frames

Left: Parabolic dilations and shear transformations of a circle; certain
angles are missing. Right: Filling in the missing angles using rotation by

90 degrees (orange).

MH3520-Ch.11, p.38

Shearlet frames

We write Rπ/2 for rotation by 90 degrees.

Theorem

Under certain conditions on ψ,ψ1, ψ2, for sufficiently small α > 1 and
β, γ > 0, the classical shearlet dictionary given by

PaSbTcψ, a ∈ ±αZ, b ∈
√
|a|βZ, c ∈ γZd,

and the cone-adapted shearlet dictionary given by

Tcψ1, PaSbTcψ2, Rπ/2PaSbTcψ2, a ∈ ±αN0 , b ∈
√
|a|βZ, c ∈ γZd,

are Hilbert frames for L2(R2)

MH3520-Ch.11, p.39

Shearlet tiling of the frequency domain

[Dahlke e.a. (2015)]

Left: classical shearlet tiling of the frequency domain.
Right: cone-adapted shearlet tiling of the frequency domain.

MH3520-Ch.11, p.40

Application of shearlets for edge detection

G
ib

er
te

ta
l.

EU
RA

SI
P

Jo
ur

na
lo

n
Ad

va
nc

es
in

Si
gn

al
Pr

oc
es

si
ng

20
14

,2
01

4:
64

Pa
ge

10
of

14
ht

tp
://

as
p.

eu
ra

si
pj

ou
rn

al
s.

co
m

/c
on

te
nt

/2
01

4/
1/

64

Fi
gu

re
6

Cr
ac

k
de

te
ct

io
n

re
su

lt
s.

(a
)U

sin
g

sh
ea

rle
tc

oe
ffi

ci
en

ts
(S

he
ar

le
t-

C)
,(

b)
us

in
g

th
re

sh
ol

di
ng

in
th

e
im

ag
e

re
co

ns
tr

uc
te

d
us

in
g

sh
ea

rle
ts

(S
he

ar
le

t-
I),

(c
)u

sin
g

in
te

ns
ity

th
re

sh
ol

di
ng

in
th

e
or

ig
in

al
im

ag
e

(d
),

an
d

us
in

g
Ca

nn
y

ed
ge

de
te

ct
io

n.
Al

lr
es

ul
ts

ar
e

ge
ne

ra
te

d
at

pe
ak

F 2
sc

or
e.

th
re

es
ca

les
,a

nd
16

di
re

ct
io

na
lf

ilt
er

so
n

th
ef

ou
rth

sc
ale

,
to

ge
ne

ra
te

!
1.

To
as

se
ss

th
ep

er
fo

rm
an

ce
of

th
es

ep
ar

a-
tio

n
alg

or
ith

m
,w

e
vis

ua
lly

co
m

pa
re

de
te

ct
io

n
re

su
lts

at
pe

ak
F 2

sc
or

e(
Fi

gu
re

6)
,a

nd
ca

lcu
lat

ed
th

eR
O

C
cu

rv
es

fo
re

ac
hi

m
ag

eu
sin

gt
he

fo
llo

wi
ng

tw
od

et
ec

tio
nm

et
ho

ds
(F

igu
re

7)
.

1.
Sh

ea
rle

t-C
.T

hi
sm

et
ho

d
ta

ke
sa

dv
an

ta
ge

of
th

e
Pa

rs
ev

al
pr

op
er

ty
of

th
es

he
ar

let
tra

ns
fo

rm
an

d
pe

rfo
rm

sc
ra

ck
de

te
ct

io
n

di
re

ct
ly

in
th

et
ra

ns
fo

rm
do

m
ain

.W
ef

irs
td

ec
om

po
se

th
ei

m
ag

ei
nt

o
cr

ac
ks

an
d

te
xt

ur
ec

om
po

ne
nt

su
sin

gi
te

ra
tiv

es
hr

in
ka

ge
wi

th
as

he
ar

let
di

ct
io

na
ry

an
d

aw
av

ele
to

ne
.I

ns
te

ad
of

us
in

gt
he

re
co

ns
tru

ct
ed

im
ag

e,
we

an
aly

ze
th

e
va

lu
es

of
th

es
he

ar
let

tra
ns

fo
rm

co
eff

ici
en

ts.
Fo

re
ac

h
sc

ale
in

th
es

he
ar

let
tra

ns
fo

rm
do

m
ain

,w
ea

na
lyz

e
th

ed
ire

ct
io

na
lc

om
po

ne
nt

sc
or

re
sp

on
di

ng
to

ea
ch

di
sp

lac
em

en
ta

nd
co

lle
ct

th
em

ax
im

um
m

ag
ni

tu
de

ac
ro

ss
all

di
re

ct
io

ns
.I

ft
he

sig
n

of
th

es
he

ar
let

co
eff

ici
en

tc
or

re
sp

on
di

ng
to

th
em

ax
im

um
m

ag
ni

tu
de

is
po

sit
ive

,w
ec

las
sif

yt
he

co
rre

sp
on

di
ng

pi
xe

la
sb

ac
kg

ro
un

d;
ot

he
rw

ise
,w

ea
ss

ign
th

en
or

m
of

th
ev

ec
to

rc
on

ta
in

in
gt

he
m

ax
im

um
re

sp
on

se
sa

t
ea

ch
sc

ale
to

ea
ch

pi
xe

la
nd

we
ap

pl
ya

th
re

sh
ol

d.
2.

Sh
ea

rle
t-I

.W
ef

irs
td

ec
om

po
se

th
ei

m
ag

ei
nt

o
cr

ac
ks

an
d

te
xt

ur
ec

om
po

ne
nt

sa
sd

es
cr

ib
ed

fo
rt

he
pr

ev
io

us
m

et
ho

d.
Th

en
,w

ea
pp

ly
an

in
te

ns
ity

th
re

sh
ol

d
on

th
er

ec
on

str
uc

te
d

cr
ac

ks
im

ag
e.

W
e

co
m

pa
re

ou
r

re
su

lts
to

th
e

fo
llo

wi
ng

tw
o

ba
sic

m
et

ho
ds

no
tb

as
ed

on
sh

ea
rle

ts:
1.

In
te

ns
ity

.T
hi

si
st

he
m

os
tb

as
ic

ap
pr

oa
ch

,w
hi

ch
on

ly
us

es
im

ag
ei

nt
en

sit
y.

Af
te

rc
om

pe
ns

at
in

gf
or

slo
w

va
ria

tio
ns

of
in

te
ns

ity
in

th
ei

m
ag

e,
we

ap
pl

ya
glo

ba
lt

hr
es

ho
ld

.
2.

Ca
nn

y.
W

eu
se

th
eC

an
ny

[3
1]

ed
ge

de
te

ct
or

as
im

pl
em

en
te

d
in

M
AT

LA
B

us
in

gt
he

de
fau

lt
σ

=
√

2
an

d
th

ed
efa

ul
th

igh
to

lo
w

th
re

sh
ol

d
ra

tio
of

40
%.

Af
te

r
us

in
g

a
lo

w-
lev

el
de

te
ct

or
,i

tm
ay

be
ne

ce
ss

ar
y

to
re

m
ov

e
sm

all
iso

lat
ed

re
gio

ns
co

rre
sp

on
di

ng
to

fal
se

de
te

ct
io

ns
du

et
or

an
do

m
no

ise
.T

hi
sp

os
tp

ro
ce

ss
in

gs
te

p
m

ay
re

du
ce

th
e

fal
se

de
te

ct
io

n
ra

te
on

in
te

ns
ity

-b
as

ed
m

et
ho

ds
.

Ho
we

ve
r,

to
pr

ov
id

e
an

ob
jec

tiv
e

co
m

pa
ri-

so
n,

we
ha

ve
ge

ne
ra

te
d

th
e

ex
pe

rim
en

ta
lr

es
ul

ts
wi

th
-

ou
t

ru
nn

in
g

an
y

po
stp

ro
ce

ss
in

g.
W

e
lea

ve
th

e
pe

rfo
r-

m
an

ce
an

aly
sis

of
a

co
m

pl
et

e
cr

ac
k

de
te

ct
or

fo
r

fu
tu

re
wo

rk
.

To
ev

alu
ate

th
ep

er
fo

rm
an

ce
of

ea
ch

cr
ac

kd
et

ec
to

r,
we

m
an

ua
lly

an
no

ta
te

dt
he

cr
ac

kp
ixe

ls
in

ea
ch

im
ag

e.
To

m
it-

iga
te

th
e

eff
ec

to
fa

m
bi

gu
ou

s
se

gm
en

ta
tio

n
bo

un
da

rie
s,

we
an

no
ta

te
d

th
eb

ou
nd

ar
ies

ar
ou

nd
th

ec
ra

ck
sa

st
igh

tly
as

po
ss

ib
le

(m
ak

in
gs

ur
et

ha
to

nl
yp

ixe
ls

co
m

pl
et

ely
co

n-
ta

in
ed

in
sid

et
he

cr
ac

kb
ou

nd
ar

ies
ar

ea
nn

ot
ate

d
as

su
ch

)
an

d
de

fin
ed

an
en

ve
lo

pe
re

gio
n

ar
ou

nd
ea

ch
cr

ac
kw

ho
se

lab
els

ar
et

re
ate

d
as

‘do
no

tc
ar

e’.
Fo

rm
all

y,
let

#
de

no
te

[Gibert (2014)]

Shearlet coefficients concentrate along edge-like discontinuities of the
signal. This can be used for edge detection.

MH3520-Ch.11, p.41

Questions to answer for yourself / discuss with friends

Repetition: Describe the shearing group and its representation.

Check your understanding: Are shearlets directional wavelets? In
what sense?

Transfer: How would you implement shearlet analysis or synthesis
using neural networks?

MH3520-Ch.11, p.42

MH3520 Chapter 11

Part 5

Signal classes and their approximation rates

MH3520-Ch.11, p.43

Signal classes

Ck functions, piecewise Ck functions, star-shaped images, cartoon images,
textures, mutilated functions, etc.

MH3520-Ch.11, p.44

Signal classes

Generally speaking, these are relatively compact subsets of L2(Rd).

Example (Ck functions)

Ck
K([−1, 1]d) denotes Ck functions f on [−1, 1]d with ∥f∥Ck(C) ≤ K.

Example (Piecewise Ck functions)

Ck,pw
K ([−1, 1]) denotes functions f1[0,c) + g1[c,1], where c ∈ (0, 1) and

f, g ∈ Ck
K([−1, 1]).

Example (Star-shaped images)

STARk
K([−1, 1]2) denotes the set of indicator functions 1B, whose

boundary ∂B consists of closed regular Jordan curves of the form

B =
{
(x+ r cosϕ, y + r sinϕ) : r ≤ f(ϕ)

}
,

where (x, y) ∈ R2, and f ∈ Ck
K([0, 2π]).

MH3520-Ch.11, p.45

Signal classes

Example (Cartoon images)

CARTk
K([−1, 1]2) denotes functions f1B + g, where f, g ∈ Ck

K([−1, 1]2)
and 1B ∈ STARk

K([−1, 1]2).

Example (Textures)

TEXTk
K,M ([−1, 1]2) denotes functions x 7→ sin(Mf(x))g(x), where

f, g ∈ Ck
K([−1, 1]2).

Example (Mutilated functions)

MUTILk
K([−1, 1]d) denotes functions x 7→ f(⟨u, x⟩)g(x), where u ∈ Rd

with ∥u∥ = 1, f ∈ Ck,pw
K (R) and g ∈ Ck

K([−1, 1]d).

MH3520-Ch.11, p.46

Approximation rates via harmonic analysis

Theorem

The approximation rate a∗(Y,X, Σ(ϕ)) ≥ k
d holds in X = L2([−1, 1]d) for

the following signal classes Y and dictionaries ϕ:

Ck
K([−1, 1]d) via wavelets, shearlets, etc.

Ck,pw
K ([−1, 1]d) with d = 1 via wavelets

STARk
K([−1, 1]d) with d = k = 2 via curvelets and shearlets

CARTk
K([−1, 1]d) with d = k = 2 via curvelets and shearlets

TEXTk
K,M ([−1, 1]d) with d = 2 via wave atoms

MUTILk
K([−1, 1]d) via ridgelets

Remark.

The lower bound is always k/d, as if there were no singularities!

Wave atoms and ridgelets are similar to wavelets and shearlets but
scale differently in space and frequency.

MH3520-Ch.11, p.47

Approximation rates via harmonic analysis

Sketch of proof.

Away from the singularities, the coefficients decay at a fast rate.

At the singularities, they decay at a slower rate, but there are not
many singular points.

Sparse approximations are defined by thresholding, i.e., picking the n
largest coefficients among the first π(n) coefficients.

Remark. The thresholded coefficients are bounded:

Corollary

In the previous theorem, Σ(ϕ) may be replaced by Σπ,M (ϕ), defined as

Σπ,M
n (ϕ) :=

{ π(n)∑
i=1

ciϕi : ci ̸= 0 at most n times, |ci| ≤M
}
,

for some polynomial π and coefficient bound M .

MH3520-Ch.11, p.48

Signal synthesis via deep learning

The above-mentioned frames are affine transformations of some
generating functions ψ.

The generating functions ψ can be approximated by networks with
finite width and depth.

By the dictionary learning theorem, the dictionary approximation rates
translate into network approximation rates.

Corollary

The same rates hold for W(X, ρ, L) in place of Σ(ϕ) if ϕ consists of affine
transformations of generating function(s) ψ which satisfy

ψ ∈ WW (X, ρ, L), for some L,W ∈ N.

Example

For wavelets and shearlets, this holds true if ρ is smooth and coincides
with the ReLU function strictly away from zero. In d = 2, L = 3 suffices.

MH3520-Ch.11, p.49

Signal analysis via deep learning

The analysis operator is given by a convolutional matrix, which is
sparse if the mother wavelet has compact support.

Extraction of the n most significant coefficients (aka. thresholding)
can be implemented by a max-pooling layer.

Thus, any signal that is well analyzed by wavelets, shearlets, or other
affine systems is well analyzed by networks with convolutional and
max-pooling layers.

Neural networks are more flexible because they combine the analytic
capabilities of all affine systems.

MH3520-Ch.11, p.50

Questions to answer for yourself / discuss with friends

Repetition: Recall some of the signal classes. How can you memorize
their approximation rates?

Check your understanding: The indicator function of the unit ball in
R2, at what rate can it be approximated by 3-layer perceptrons?

Discussion: In practice, to what extent do you think deep learning
actually performs harmonic analysis? What about synthesis?

MH3520-Ch.11, p.51

MH3520:Mathematics of Deep Learning

Chapter 12

Coding theory and best approximation rates

MH3520-Ch.12, p.1

Context

Last chapters:

If a function can be approximated by splines or wavelets, it can be
approximated at least as well by neural networks.

This chapter:

Memory-constrained networks are function encoders, and encoders
have information-theoretic limits on how well they can perform.

For many signal classes, memory-constrained networks are
rate-optimal (as are certain dictionaries from harmonic analysis).

MH3520-Ch.12, p.2

Overview of Chapter 12

1 Rate–distortion theory

2 Upper bounds on encoding rates

3 Lower bounds on encoding rates

4 Upper bound on network approximation rates

5 Lower bound on network approximation rates

MH3520-Ch.12, p.3

Overview of coding theory and rate-optimal approximation

Notation

k denotes a smoothness parameter, and d the input dimension.

Main result

Dictionary & network approximation rates = encoding rate = k
d .

Rate-optimal approximation by dictionaries

Part 2: Many signal classes contain hypercubes, which are difficult to
encode. This entails an upper bound of k

d on the encoding rate.

Part 3: Harmonic analysis allows one to encode the signals in a string
of coefficients, resulting in a lower bound of k

d on the encoding rate.

Rate-optimal approximation by networks

Part 4: As memory-constrained networks are encoders, the network
approximation rate has the information-theoretic upper bound k

d .

Part 5: Dictionary approximation with bounded coefficients (as in
thresholding) can be implemented by memory-constrained networks.
Hence, the network approximation rate is lower-bounded by k

d .
MH3520-Ch.12, p.4

Sources for this chapter:

Dahlke, De Mari, Grohs, Labate (2015): Harmonic and applied
analysis—from groups to signals. Birkhäuser.

Bölcskei, Grohs, Kutyniok, and Petersen (2019): Optimal
approximation with sparsely connected deep neural networks. SIAM
Journal of Mathematical Data Science 1(1), pp. 8–45.

MH3520-Ch.12, p.5

MH3520 Chapter 12

Part 1

Rate–distortion theory

MH3520-Ch.12, p.6

Overview of rate–distortion theory

Rate–distortion theory is a major branch of information theory and
coding theory.

It provides mathematical foundations for lossy data compression.

Specifically, it investigates the fundamental tradeoff between the
transmission bit rate and the signal distortion.

The results are independent of any specific coding method.

DecoderEncoder
Input
Signal

Output
Signal

[Girod]

MH3520-Ch.12, p.7

Rate–distortion curve

Distortion D

Rate R

High bit rate,
low distortion

Low bit rate,
high distortion

[Girod]

The rate–distortion curve consists of pairs of minimal bit rates for
maximally admissible signal distortions.

MH3520-Ch.12, p.8

Encoding, decoding, and distortion

Definition

Let X be a normed space, let Y ⊆ X be a signal class, and let n ∈ N.

The set of binary encoders of Y with run-length n is defined as

En := {E : Y → {0, 1}n}.

The set of binary decoders with run-length n is defined as

Dn := {D : {0, 1}n → X}.

The distortion of an encoder-decoder pair (E,D) ∈ En ×Dn is

δ(E,D) := sup
f∈Y
∥f −D(E(f))∥X .

Remark: More generally, X could be a quasi-normed or metric space.
MH3520-Ch.12, p.9

Encoding rate

Definition

The encoding rate of a signal class Y in a normed space X is defined as

e∗(Y,X) := sup
{
r > 0

∣∣∣ inf
(E,D)∈En×Dn

δ(E,D) = O(n−r)
}
.

Remark:

The encoding rate quantifies the complexity of a signal class in an
information-theoretic way.

For any r < e∗(Y,X), one can compress signals f ∈ Y using n-bit
encodings with distortion proportional to n−r.

MH3520-Ch.12, p.10

Examples

Example

Any set Y of cardinality n can be encoded with ⌈log2(n)⌉ bits and zero
distortion. The encoding rate is infinite.

Remark. The above example is the most important of all: as all other
rates are polynomial, a logarithmic rate is extremely slow.

Example

The interval Y := [0, 1] in X := R can be encoded with n bits and
distortion 2−n. As the distortion decays exponentially in n, e∗(Y,X) =∞.

Example

Any set Y with positive encoding rate is totally bounded, i.e., it can be
covered by finitely many balls of any given radius. Hence, Y is relatively
compact, i.e., its closure in X is compact.

MH3520-Ch.12, p.11

No compression without distortion

Definition

The Hamming distance between two bit streams ξ, η ∈ {0, 1}n is

d(ξ, η) := Tξ − ηU0 := #
{
i : ξi ̸= ηi

}
.

The Hamming distortion is the distortion of bit streams measured in the
Hamming distance.

Lemma

For any compression rate R < 1, there exists C > 0 such that any
encoder-decoder pair with sufficiently high run-lengths n ≤ Rm,

E : {0, 1}m → {0, 1}n, D : {0, 1}n → {0, 1}m,

has Hamming distortion greater than or equal to Cm.

The proof is elementary; see [Dahlke e.a., Lemma 5.14].
MH3520-Ch.12, p.12

Relation to covering numbers

Encoding rates are closely related to covering numbers, which we have
already encountered in statistical learning theory.

Definition

Let Y be a relatively compact metric space.

The covering number N (Y, ϵ) is the minimal number N ∈ N such
that N discs of radius ϵ cover all of Y .

The Kolmogorov entropy is defined as Hϵ(Y) := log2N (Y, ϵ).

MH3520-Ch.12, p.13

Relation to covering numbers

Lemma

The encoding rate is related to the Kolmogorov entropy (and hence to
covering numbers) by

e∗(Y,X) = sup
{
r > 0 : Hϵ(Y) = O(ϵ−

1
r)
}
.

Proof:

Given a pair (E,D) of length n that achieves distortion ϵ, the ϵ-balls
centered at D(ξ), ξ ∈ {0, 1}n, cover Y .

Conversely, given ϵ > 0, we can find N := 2Hϵ(Y) centers whose
ϵ-neighborhoods cover Y . Encode Y using the binary representation
of the nearest center, and decode by reversing this process.

MH3520-Ch.12, p.14

Signal classes

Ck functions, piecewise Ck functions, star-shaped images, cartoon images,
textures, mutilated functions, etc.

MH3520-Ch.12, p.15

Signal classes and encoding rates

Coding theory and harmonic analysis work well together and yield sharp
upper and lower bounds on encoding and approximation rates:

Theorem

The encoding rate e∗(Y,X) = k
d holds in X := L2([−1, 1]d) for the

following signal classes Y :

Ck
K([−1, 1]d)

STARk
K([−1, 1]d) for d = k = 2

TEXTk
K,M ([−1, 1]d) for d = 2

Ck,pw
K ([−1, 1]d) for d = 1

CARTk
K([−1, 1]d) for d = 2

MUTILk
K([−1, 1]d)

Proof.

e∗(Y,X) ≤ k
d : see proposition in Part 2, via hypercube embeddings.

e∗(Y,X) ≥ k
d : see proposition in Part 3, via harmonic analysis.

MH3520-Ch.12, p.16

Memory-constrained neural networks

Memory-constrained networks can be seen as function encoders. The
memory constraint is implemented by bounding the network’s coefficients:

Definition

WMn (X, ρ, L) denotes the realizations of networks with coefficients bounded
in absolute value by M , at most n non-zero weights, activation function ρ,
and L layers, seen as elements of the function space X.

Careful: These hypothesis classes are not closed under scalar
multiplication. Hence, approximation spaces are ill defined.

Notation: If µ is a polynomial, then Wµ(X, ρ, L) denotes the sequence
of hypothesis classes W

µ(n)
n (X, ρ, L), n ∈ N.

MH3520-Ch.12, p.17

Signal classes and network approximation rates

Neural networks with polynomially bounded coefficients turn out to be
rate-optimal for all of our signal classes:

Theorem

The network approximation rate a∗(Y,X, Wµ(X, ρ, L)) = k
d holds in

X := L2([−1, 1]d) if ρ is a smoothened ReLU function, L is sufficiently
large, and µ is a suitable polynomial, for the following signal classes Y :

Ck
K([−1, 1]d)

STARk
K([−1, 1]d) for d = k = 2

TEXTk
K,M ([−1, 1]d) for d = 2

Ck,pw
K ([−1, 1]d) for d = 1

CARTk
K([−1, 1]d) for d = 2

MUTILk
K([−1, 1]d)

Proof.

a∗(Y,X, Wµ(X, ρ, L)) ≤ k
d : see the proposition in Part 4, by encoding

networks.
a∗(Y,X, Wµ(X, ρ, L)) ≥ k

d : see the proposition in Part 5, via harmonic
analysis.

MH3520-Ch.12, p.18

Questions to answer for yourself / discuss with friends

Repetition: What is an endoding-decoding pair, and how are encoding
rates defined?

Repetition: How many bits are needed to encode a natural number in
{1, . . . , n}?

Check your understanding: How many bits are needed to encode the
set {f}, where f is a Lipschitz function on [−1, 1]d?

Transfer: Some compression algorithms such as zip or flac are
called lossless. What could be meant by this?

MH3520-Ch.12, p.19

MH3520 Chapter 12

Part 2

Upper bounds on encoding rates

MH3520-Ch.12, p.20

Hypercubes

Definition

An m-dimensional hypercube in a Hilbert space is a set

m∑
i=1

ϵiψi, ϵi ∈ {0, 1},

with mutually orthogonal sides ψi of equal length.

Remark. Hypercubes are particularly difficult to encode: whenever two
vertices have the same encoding, the distortion is at least the side length.

Example

Let Y be the ℓp unit ball in X := ℓ2, for some p ≤ 2. Then, Y contains
for any m ∈ N an m-dimensional hypercube with sides of length m−1/p:

ψi := m−1/p
1Ai , #Ai = m, Ai ∩Aj = ∅.

MH3520-Ch.12, p.21

Hypercube embeddings

Definition

A signal class Y in a Hilbert space X has embedded ℓp hypercubes if it
contains hypercubes of dimension m and side length ≥ Cm−1/p, for some
constant C > 0 and some sequence of dimensions m tending to infinity.

Theorem

If Y has embedded ℓp hypercubes for some p ∈ (0, 2], then

e∗(Y,X) ≤ 1

p
− 1

2
.

MH3520-Ch.12, p.22

Proof: hypercube embeddings

Proof.

Consider an encoder-decoder pair with run-length n.

This yields an encoder-decoder pair for any embedded hypercube
(restrict the encoder’s input and project the decoder’s output).

In turn, this yields an encoder-decoder pair for any bitstream of
run-length m (identify bitstreams with hypercubes).

Fix the compression rate R := 1/3 and set m := n/R.

Then, the Hamming distortion of bitstreams is proportional to n or
higher, i.e. at least that many bits are wrong.

The squared distortion of the hypercube encoder-decoder is, by
Pythagoras, the number of wrong bits times the squared side length,
i.e., proportional to n ∗ n−2/p or higher. Accordingly, the distortion is
proportional to n1/2−1/p or higher.

For the encoder-decoder without restriction and projection, the
distortion is only higher.

MH3520-Ch.12, p.23

Signal classes and encoding rates

Proposition

The upper bound e∗(Y,X) ≤ k
d holds in X = L2([−1, 1]d) for the

following signal classes Y via embedding of ℓ1/(
k
d
+ 1

2
) hypercubes:

Ck
K([−1, 1]d)

STARk
K([−1, 1]d) for d = k = 2

TEXTk
K,M ([−1, 1]d) for d = 2

Ck,pw
K ([−1, 1]d) for d = 1

CARTk
K([−1, 1]d) for d = 2

MUTILk
K([−1, 1]d)

Proof: see next slide.

MH3520-Ch.12, p.24

Proof: hypercube embeddings for signal classes

Proof for Ck
K([−1, 1]d):

Choose ψ ≥ 0 with support in [−1, 1]d and ∥ψ∥Ck = K.

The md-dimensional hypercube with orthogonal sides

ψi(x) := m−kψ(mx− i), i ∈ {0, . . . ,m− 1}d

is contained in Ck
K([−1, 1]d) (why?) and has side-length

∥ψi∥L2([−1,1]) = m−k−d/2.

Thus, Ck
K([−1, 1]) has embedded ℓ1/(

k
d
+ 1

2
) hypercubes.

Remark. For other signal classes, one uses the following hypercubes:

1{∥x∥≤1} +
∑n−1

i=0 ϵi
(
1{∥x∥≤i/n} − 1{∥x∥≤1}

)
for star-shaped images∑n−1

i,j=1 ϵi,j sin
(
n−kψ(nx− i)ψ(ny − j)

)
for textures

MH3520-Ch.12, p.25

Questions to answer for yourself / discuss with friends

Repetition: How are upper bounds on the encoding rate obtained
from hypercube embeddings?

Check your understanding: What is the encoding rate of the unit ball
Y in X?

Check your understanding: ∂kxf(ax) = . . . and
√∫

f(ax)2 dx = . . . ?

Discussion: Could we use other function classes (e.g. linear or
Lipschitz functions) in the definition of encoders and decoders? What
kind of coding theory would we get from this?

MH3520-Ch.12, p.26

MH3520 Chapter 12

Part 3

Lower bounds on encoding rates

MH3520-Ch.12, p.27

Dictionary approximation with bounded coefficients

Motivation.

Dictionaries can be used as encoders and decoders.

For encoding, one stores the coefficients.

For decoding, one multiplies with the dictionary.

For this to work well, the coefficients must be bounded.

Definition

Sparse approximation with polynomial-depth search and bounded
coefficients uses the hypothesis classes

Σπ,M
n (ϕ) :=

{ π(n)∑
i=1

ciϕi : ci ̸= 0 at most n times, |ci| ≤M
}
,

for some polynomial π and constant M .

Careful: These hypothesis classes are not closed under scalar multiplication!
MH3520-Ch.12, p.28

Encoding and decoding using dictionaries

As dictionaries are encoder-decoder pairs, the dictionary approximation
rate can’t be higher than the encoding rate:

Theorem

For any signal class Y and a bounded dictionary ϕ in X, polynomial π,
and M ∈ N,

e∗(Y,X) ≥ a∗(Y,X, Σπ,M (ϕ)).

Remark.

A dictionary ϕ is called rate-optimal for Y if equality holds above.

The boundedness constraint on the dictionary and the dictionary
coefficients can be omitted if ϕ is a Hilbert frame and Y is bounded.

However, boundedness is needed in one way or another for encoding.

MH3520-Ch.12, p.29

Proof: encoding using dictionaries

Proof:

We start by constructing an encoder. For any r < a∗(Y,X, Σπ,M (ϕ)),
there exists a constant C > 0 such that for all n ∈ N and f ∈ Y ,
there exist coefficients ci ∈ R with TcU0 ≤ n such that

∥∥∥∥f − π(n)∑
i=1

ciϕi

∥∥∥∥
X

≤ Cn−r .

The set Λ := {i ∈ N : ci ̸= 0} can be encoded using n⌈log2(π(n))⌉
bits, which is O(n log n).

Rounding the non-zero coefficients ci up to multiples of n−r−1

encodes them with a bit string of length O(n log n).

Altogether, this gives an encoding E : Y → {0, 1}l with run-length
l = O(n log n).

MH3520-Ch.12, p.30

Proof: decoding using dictionaries

Decoding is done by reversing this process: starting from a bit string
ξ, reconstruct the set Λ and the rounded approximations ĉi of the
non-zero coefficients ci, and define the decoder

D : {0, 1}l → X, D(ξ) :=
∑
i∈Λ

ĉiϕi.

It remains to control the distortion: with K := supi ∥ϕi∥X , one has

∥f −D(E(f))∥X =

∥∥∥∥f −∑
i∈Λ

ĉλϕi

∥∥∥∥
X

≤
∥∥∥∥f −∑

i∈Λ
ciϕi

∥∥∥∥
X

+

∥∥∥∥∑
i∈Λ

(ĉi − ci)ϕi
∥∥∥∥
X

≤ Cn−r +Kn−r−1n = O(n−r).

MH3520-Ch.12, p.31

Signal classes and encoding rates

The following lower bounds are sharp and are obtained as special cases of
the previous theorem:

Proposition

The lower bound e∗(Y,X) ≥ k
d holds in X = L2([−1, 1]d) for the

following signal classes Y :

Ck
K([−1, 1]d) via wavelets, shearlets, and many more

Ck,pw
K ([−1, 1]d) for d = 1 via wavelets

STARk
K([−1, 1]d) for d = k = 2 via curvelets and shearlets

CART2
K([−1, 1]d) for d = k = 2 via curvelets and shearlets

TEXTk
K,M ([−1, 1]d) for d = 2 via wave atoms

MUTILk
K([−1, 1]d) via ridgelets

Proof: e∗(Y,X) ≥ a∗(Y,X, Σπ,M (ϕ)), and the indicated dictionary ϕ
achieves the indicated rate on the signal class Y for suitable π,M .

MH3520-Ch.12, p.32

Rate-optimal approximation by dictionaries

Corollary

In each case of the previous proposition, the indicated dictionary ϕ is
rate-optimal for the indicated signal class Y , i.e.,

e∗(Y,X) = a∗(Y,X, Σπ,M (ϕ)).

Proof: The following rates are equal,

k

d

1

= a∗(Y,X, Σπ,M (ϕ))
2

≤ e∗(Y,X)
3

≤ k

d
,

where

1 holds thanks to harmonic analysis,

2 holds because dictionaries can be used as encoders, and

3 holds thanks to hypercube embeddings.

MH3520-Ch.12, p.33

Limits on dictionary approximation

Here is what it means that the dictionary approximation rate cannot be
higher than the encoding rate: it is an existence result for ‘bad’ signals.

Corollary

If α > e∗(Y,X) and C > 0, there exists a signal f ∈ Y which cannot be
approximated by Σ

π(n),M
n (ϕ) with error bounded by Cn−α, i.e.,

sup
n∈N

nαEn−1(f,X, Σ
π,M (ϕ)) > C.

Remark.

In general, we cannot find a signal f whose approximation error fails
to be O(n−α), without fixed proportionality constant.

For example, all signals in Y might have approximation errors in
O(n−α) but with arbitrarily bad proportionality constants C.

MH3520-Ch.12, p.34

Questions to answer for yourself / discuss with friends

Repetition: How are lower bounds on encoding rates obtained from
dictionary approximation rates?

Check your understanding: Dictionaries are function encoders: what
goes wrong if polynomial-depth search of boundedness or
boundedness of the coefficients are omitted?

Check your understanding: If the signal class is bounded, does this
imply that the dictionary coefficients are bounded?

Check your understanding: Under what circumstances does
thresholding lead to bounded coefficients?

MH3520-Ch.12, p.35

MH3520 Chapter 12

Part 4

Upper bound on network approximation rates

MH3520-Ch.12, p.36

Quantization of neural networks

For encoding, the network’s coefficients, which are assumed to be
bounded, must be quantized.

The quantization error of the perceptron is proportional to the
quantization error of the coefficients, for Lipschitz activation functions.

The proportionality constant admits a polynomial bound.

Lemma

For any L ∈ N, there exists a polynomial π with the following property: if
X = C([−K,K]d), ρ is an activation function with Lipschitz constant C,
Φ is a neural network with realization in WMW (X, ρ, L), and Φ̃ is obtained
by rounding the coefficients of Φ to the nearest multiple of ϵ in [−M,M],
then

∥R(Φ)−R(Φ̃)∥X ≤ ϵ π(C,K,M,W).

Remark. Alternatively, one may assume that ρ is differentiable with
derivative bounded in absolute value by some polynomial.

MH3520-Ch.12, p.37

Proof: quantization of neural networks

Proof.

We set Φℓ = ((Aℓ, bℓ), . . . , (A1, b1)) and ∥f∥ := supxmaxi |f(x)i|.
For the single-layer network R(Φ1)(x) = A1x+ b1,

∥R(Φ1)∥ ≤ KMW +MW, ∥R(Φ1)−R(Φ̃1)∥ ≤ ϵKW + ϵW.

For the double-layer network R(Φ2)(x) = A2ρ(A1x+ b1) + b2,

∥R(Φ2)∥ ≤ CMW∥R(Φ1)∥+MW,

∥R(Φ2)−R(Φ̃2)∥ ≤ ϵCW∥R(Φ1)∥+ ϵW + CMW∥R(Φ1)−R(Φ̃1)∥.

The statement follows by induction.

MH3520-Ch.12, p.38

Encoding via neural networks

Neural networks with bounded coefficients are memory-constrained, hence
can be used as encoders. Therefore, the network approximation rate
cannot exceed the encoding rate:

Theorem

Let Y be a signal class in X := Lp([−1, 1]d) for some p ∈ (0,∞], let µ be
a polynomial, let ρ be a Lipschitz activation function, and let L ∈ N.
Then,

a∗(Y,X, Wµ(X, ρ, L)) ≤ e∗(Y,X).

Remark:

Neural networks are called rate-optimal for Y if equality holds above.

The theorem implies a lower bound on the network connectivity for
any given approximation rate.

Alternatively, ρ can also be differentiable with derivative bounded in
absolute value by some polynomial.

MH3520-Ch.12, p.39

Proof: encoding via neural networks

Proof:

We approximate signals f by perceptrons R(Φ):

– Let r < a∗(Y,X, Wµ(X, ρ, L)). Then, there exists C > 0 such that for
any signal f ∈ Y and n ∈ N, there exists a network Φ with realization
in W

µ(n)
n (X, ρ, L) and approximation error ∥R(Φ)− f∥X ≤ Cn−r.

If necessary, we compress the network by deleting unused neurons:

– This ensures that B ≤W +NL, where B and W are the numbers of
biases and weights, respectively, and NL is the output dimension.

– The realization of Φ is not affected, and we use the same letter Φ to
denote the compressed network.

We encode the architecture of Φ in a bit string:

– We encode the number W ≤ n of non-zero weights in a string of W
1’s, followed by a single 0.

– Then, we encode the numbers N0, . . . , NL ≤ 2W in a string of
(L+ 1)⌈log2W + 1⌉ bits.

MH3520-Ch.12, p.40

Proof: encoding via neural networks

We encode the topology (aka. connectivity) of Φ in a bit string:

– To each neuron, we assign a unique index i ∈ {1, . . . , N}. This index
can be encoded in a string bi of ⌈log2W + 1⌉ bits because N ≤ 2W .

– For each neuron i, we output the concatenation of the bit strings bj of
all children j, followed by a zero string of length 2⌈log2W + 1⌉ to
signal the transition to neuron i+ 1.

We quantize the network Φ to a network Φ̃:

– Rounding the coefficients of Φ to the nearest multiple of n−k in
[−µ(n), µ(n)] yields a quantized network Φ̃.

– The previous lemma allows us to choose k, independently of Φ, such
that ∥R(Φ)−R(Φ̃)∥X ≤ Cn−r.

We encode the coefficients of Φ̃ in a bit string:

– Each coefficient requires ⌈log2(2nkµ(n))⌉ = O(log2 n) bits.
– There are O(n) weights and biases.

Overall, we have used O(n log2 n) bits. Decoding is done by reversing
the process and achieves distortion O(n−r). Thus, r ≤ e∗(Y,X).

MH3520-Ch.12, p.41

Limits on network approximation

Here is what it means that the network approximation rate cannot be
higher than the encoding rate: it is an existence result for ‘bad’ signals.

Corollary

Under the assumptions of the previous theorem, there exists for any
α > e∗(Y,X) and C > 0 a signal f ∈ Y which cannot be approximated by
perceptrons in W

µ(n)
n (X, ρ, L) with error bounded by Cn−α, i.e.,

sup
n∈N

nαEn−1(f,X, W
µ(X, ρ, L)) > C.

Remark.

In general, we cannot find a signal f whose approximation error fails
to be O(n−α), without fixed proportionality constant.

For example, all signals in Y might have approximation errors in
O(n−α) but with arbitrarily bad proportionality constants C.

MH3520-Ch.12, p.42

Signal classes and network approximation rates

Proposition

The upper bound a∗(Y,X, Wµ(X, ρ, L) ≤ k
d holds in X = L2([−1, 1]d) for

any polynomial µ, Lipschitz activation function ρ, and L ∈ N:

Ck
K([−1, 1]d)

STARk
K([−1, 1]d) for d = k = 2

TEXTk
K,M ([−1, 1]d) for d = 2

Ck,pw
K ([−1, 1]d) for d = 1

CARTk
K([−1, 1]d) for d = 2

MUTILk
K([−1, 1]d)

MH3520-Ch.12, p.43

Questions to answer for yourself / discuss with friends

Repetition: Why is the network approximation rate upper-bounded by
the encoding rate?

Check your understanding: Why can the logarithmic factor log2 n in
the rate computation be ignored?

Check your understanding: In the last proof, decoding is done by
reversing the encoding process—what does this mean specifically?

Discussion: In actual deep-learning implementations, are neural
networks memory-constrained?

Discussion: What does the result say about deep learning? What are
limitations of the result?

MH3520-Ch.12, p.44

MH3520 Chapter 12

Part 5

Lower bound on network approximation rates

MH3520-Ch.12, p.45

Dictionary learning with bounded coefficients

Motivation.

Loosely speaking, networks with bounded coefficients can implement
dictionary approximation with bounded coefficients.

Standing assumption.

Y is a signal class in a quasi-normed function space X.

ρ is an activation function. L,W are numbers of layers and weights.

ϕ = (ϕi)i∈N is a dictionary in X.

Remark.

The hypothesis classes Σπ,M (ϕ) and WM (X, ρ, L) with coefficients
bounded by M are not closed under scalar multiplication.

Therefore, approximation spaces Aα are ill-defined, and we will
formulate our dictionary learning theorem in terms of approximation
rates a∗.

MH3520-Ch.12, p.46

Dictionary learning with bounded coefficients

Theorem

Assume for some bivariate polynomial ν that

∀i, n ∈ N : nEn(ϕi, X, W
ν(i,·)
W (X, ρ, L)) ≤ 1.

Then, for any polynomial π and constant M ∈ N, there exists a
polynomial µ such that

a∗(Y,X, Σπ,M (ϕ)) ≤ a∗(Y,X, Wµ(X, ρ, L)).

In words. If networks approximate a dictionary well, and the dictionary
approximates signals well, then networks approximate the signals well.

Example

The wavelet or shearlet dictionary (ϕi) generated by a mother wavelet
ψ ∈ WW (X, ρ, L) satisfies the condition of the theorem. (Why?)

MH3520-Ch.12, p.47

Proof: dictionary learning with bounded weights

Proof.

Let a := a∗(Y,X, Σπ,M (ϕ)). We modify ν such that

∀i, n ∈ N : na+1En(ϕi, X, W
ν(i,·)
W (X, ρ, L)) ≤ 1.

For any f ∈ Y , finite sequence c, and perceptrons ψi,∥∥f −∑
i

ciψi

∥∥
X
≤
∥∥f −∑

i

ciϕi
∥∥
X
+
∑
i

|ci|∥ϕi − ψi∥X .

If ψi have coefficients bounded by ν(i, n), then the perceptron
∑

i ψi

has coefficients bounded by µ(n) :=M
∑π(n)

i=1 ν(i, n).
Taking the infimum over perceptrons ψi, estimating the last sum by a
supremum, and taking the infimum over sequences c yields

En(f,X, W
µ(X, ρ, L)) ≤ En(f,X, Σ

π,M (ϕ))

+M sup
i
nEn(ϕi, X, W

ν(i,·)
W (X, ρ, L)).

For any α < a, we multiply by nα, take the supremum over n, and
note that the right-hand side is finite.

MH3520-Ch.12, p.48

Lower bounds on network approximation rates

The following lower bounds are special cases of the previous theorem:

Proposition

The lower bound a∗(Y,X, Wµ(X, ρ, L)) ≥ k
d holds in X = L2([−1, 1]d) for

smoothened ReLU activation functions ρ, sufficiently many layers L,
suitable polynomials µ, and the following signal classes Y :

Ck
K([−1, 1]d) via wavelets, shearlets, and many more

Ck,pw
K ([−1, 1]d) for d = 1 via wavelets

STAR2
K([−1, 1]d) for d = k = 2 via curvelets and shearlets

CART2
K([−1, 1]d) for d = k = 2 via curvelets and shearlets

TEXTk
K,M ([−1, 1]d) for d = 2 via wave atoms

MUTILk
K([−1, 1]d) via ridgelets

Proof: e∗(Y,X) ≥ a∗(Y,X, Σπ,M (ϕ)), and the indicated dictionary ϕ
consists of affine transforms of perceptron(s) ψ ∈WW (X, ρ, L).

MH3520-Ch.12, p.49

Rate-optimal approximation by neural networks

Corollary

In the previous theorem, the networks are rate-optimal for the listed signal
classes Y .

Proof: The following rates are equal,

k

d

1

= a∗(Y,X, Σπ,M (ϕ))
2

≤ a∗(Y,X, Wµ(X, ρ, L))
3

≤ e∗(Y,X)
1

=
k

d
,

because

1 the dictionary ϕ is rate-optimal by Parts 2 and 3,

2 networks with bounded coefficients can implement dictionary
approximation with bounded coefficients by the present Part 5, and

3 networks with bounded coefficients are function encoders by Part 4.

MH3520-Ch.12, p.50

Questions to answer for yourself / discuss with friends

Repetition: Why is the network approximation rate lower-bounded by
the dictionary approximation rate?

Check your understanding: How wide and deep are the approximating
networks?

Check your understanding: The polynomial bound on the networks’
coefficients has no impact on the approximation rate—why?

Transfer: How does the present dictionary learning theorem differ
from the one of Chapter 9?

Discussion: What does the result say about deep learning? What are
limitations of the result?

MH3520-Ch.12, p.51

	Introduction to deep learning
	Deep learning in the news
	Brief history of deep learning
	Multilayer Perceptrons
	Deep learning as a way of programming (Optional)
	Deep learning as representation learning
	Towards a mathematical theory of deep learning
	Classification by Machine Learning (Optional)

	Basics of numerical optimization
	Differential calculus
	Mathematical optimization
	Numerical optimization
	Gradient flow and gradient descent (Optional)
	Minimizers of convex objectives (optional)
	Gradient flow and gradient descent of convex objectives (Optional)

	Training neural networks
	Training neural networks
	Backpropagation
	Loss landscape
	Stochastic gradient descent

	Basics of probability theory
	Measures
	L0 spaces and convergence in measure
	L1 spaces and integration
	Lp spaces, inequalities, and limit theorems
	Probability

	Statistical learning theory
	Introduction to statistical learning
	Empirical risk minimization and related algorithms
	Error decompositions
	Error trade-offs (optional)
	Error bounds
	Concentration inequalities
	Bounds on the uniform generalization error

	Basics of functional analysis
	Topology
	Topological vector spaces
	A zoo of function spaces
	Convexity and the Hahn–Banach theorem
	Completeness and the uniform boundedness principle (Optional)

	Universality of multi-layer perceptrons
	Universality of multi-layer perceptrons
	Banach algebras and the Stone–Weierstrass theorem
	Integral transforms
	Examples of discriminatory activation functions

	Basics of approximation theory
	Approximation theory
	Banach frames and orthonormal bases
	Approximation in sequence spaces
	Fourier approximation (Optional)

	Splines and approximation by wide networks
	Spaces of neural networks
	Approximation spaces of multi-layer perceptrons
	Dictionary learning
	Spline approximation
	Dictionary learning with splines

	Analyticity and approximation by deep networks
	Approximation by deep ReLU networks
	Operations on ReLU networks
	ReLU representation of saw-tooth functions
	ReLU approximation of multiplication
	ReLU approximation of analytic functions

	Harmonic analysis and approximation by wide networks
	Harmonic analysis
	Gabor analysis
	Wavelet analysis
	Shearlet analysis
	Signal classes and their approximation rates

	Coding theory and best approximation rates
	Rate–distortion theory
	Upper bounds on encoding rates
	Lower bounds on encoding rates
	Upper bound on network approximation rates
	Lower bound on network approximation rates

