
Math 18500 Week 5: Second Order Inhomogeneous Equations

Exponential Response. We now turn our attention to inhomogeneous second order equations

my′′ + ly′ + ky = f(t)

where m, l, and k are constants, and f(t) is a function of t. Recall that equations like this can be written
in operator form as

Oy = f,

where
O = mD2 + lD + k

is a linear differential operator.

Before we get started solving inhomogeneous equations, recall the three crucial properties of linear equations:

(1) Suppose that y1(t) and y2(t) are two solutions of a linear homogeneous equation:

Oy1 = 0

Oy2 = 0.

If c1 and c2 are arbitrary constants, and

y(t) = c1y1(t) + c2y2(t),

then y(t) is a solution of the same homogeneous equation:

O[c1y1 + c2y2] = c1Oy1 + c2Oy2 = 0 + 0 = 0

In other words, solutions of homogeneous equations can be superimposed.

(2) Suppose that y1(t) and y2(t) are solutions of linear inhomogeneous equations with different right
hand sides:

Oy1 = f1

Oy2 = f2

If c1 and c2 are arbitrary constants, and

y(t) = c1y1(t) + c2y2(t)

then y(t) is a solution of the inhomogeneous equation

O [c1y1 + c2y2] = c1f1 + c2f2

where the right hand side is a linear combination of the right hand sides of the original equations.
(3) Suppose that yp(t) is a particular solution of an inhomogeneous equation,

Oyp = f

If yh(t) is any solution of the corresponding homogeneous equation,

Oyh = 0.

and if
y(t) = yp(t) + yh(t),

then y(t) is a solution of the original inhomogeneous equation:

Oy = Oyp +Oyh = f + 0 = f

From property (3) you can see that the only difficult part of solving an inhomogeneous equation is finding
one particular solution. Once a particular solution yp has been found, more general solutions can always be
constructed by adding solutions of the homogeneous equation.

As a simple example to get us started, suppose we want to solve an inhomogeneous equation like

y′′ + 4y′ + 3y = et.

In general, we can often find particular solutions of equations of the form

my′′ + ly′ + ky = ert,
1
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using an ansatz of the form
y = Cert,

where C is an unspecified constant (or undetermined coefficient).

In the case of the equation
y′′ + 4y′ + 3y = et

we can try the ansatz y = Cet. This gives us

Cet + 4Cet + 3Cet = et.

Dividing by et we find that
8C = 1,

so C = 1
8 . This gives us a particular solution,

yp =
1

8
et.

Once we have a particular solution, more general solutions can be obtained by adding solutions of the
corresponding homogeneous equation

y′′ + 4y′ + 3y = 0

The general solution of this equation works out to be

yh = c1e
−t + c2e

−3t,

and we can conclude that

y = yp + yh =
1

8
et + c1e

−t + c2e
−3t

is a solution of the original inhomogeneous equation. 1

This idea allows us to solve arbitrary inhomogeneous initial value problems (once a particular solution is
known!). For example, to solve the initial value problem

y′′ + 4y′ + 3y = et , y(0) = 0 , y′(0) = 0

we can just write out the solution we found above and its derivative,

y =
1

8
et + c1e

−t + c2e
−3t

y′ =
1

8
et − c1e−t − 3c2e

−3t

Setting t = 0 in both equations gives us a system of equations for c1 and c2,

0 = y(0) =
1

8
+ c1 + c2

0 = y′(0) =
1

8
− c1 − 3c2

Adding the equations, we find that

0 =
1

4
− 2c2 =⇒ c2 =

1

8
and substituting in the first equation, we find that

0 =
1

8
+ c1 +

1

8
=⇒ c1 = −1

4
So, the solution of the initial value problem is

y =
1

8
et − 1

4
e−t +

1

8
e−3t.

1In fact, this is the general solution of the inhomogeneous equation! If y was any other solution, then we would have

Oy = Oyp = f

O(y − yp) = Oy1 −Oy2 = f − f = 0.

Therefore, yh = y − yp is a solution of the homogeneous equation, and

y = yp + yh
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To reiterate, the only difficult part of solving inhomogeneous equations is finding particular solutions!

As a next simplest case, suppose we are given an inhomogeneous equation

my′′ + ly′ + ky = c1e
r1t + c2e

r2t

where the right hand side is a linear combination of exponentials. Equations of this form can be solved by
applying crucial property (2) of linear equations.

For example, consider the equation
y′′ + 4y′ + 3y = 5et − 7e3t.

To find a particular solution of this equation, we first seek solutions y1(t) and y2(t) of the equations

y′′1 + 4y′1 + 3y1 = et

y′′2 + 4y′2 + 3y2 = e3t.

If we can find theses solutions, then the linear combination y(t) = 5y1(t) − 7y2(t) will be a solution of the
equation

y′′ + 4y′ + 3y = 5et − 7e3t.

Of course, we have already seen that y1 = 1
8e
t is a solution of the first equation. To find a solution of the

second equation, we can try an ansatz of the form y2 = Be3t, where B is an undetermined constant. This
leads to the equation

9Be3t + 12Be3t + 3Be3t = e3t,

and solving this equation gives the value B = 1
24 , so

y2 =
1

24
e3t.

Therefore,

y = 5y1(t)− 7y2(t) =
5

8
et − 7

24
e3t

is the desired particular solution.
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Sinusoidal Response. The methods of the previous seciton can also be applied when the right hand side
is a sinusoid, because sinusoids are linear combinations of complex exponentials.

For example, to find a particular solution of the equation

y′′ + y′ + 3y = cos t

we can use Euler’s formula to rewrite the right hand side of the equation as a sum of complex exponentials:

cos(t) =
1

2
(cos t+ i sin t)− 1

2
(cos t− i sin t) =

1

2
eit +

1

2
e−it.

This transforms the right hand side of our equation into a linear combination of complex exponentials,

y′′ + y′ + 3y =
1

2
eit +

1

2
e−it,

and we can solve this equation using the same procedure as before, by solving the equations

z′′ + z′ + 3z = eit

w′′ + w′ + 3w = e−it

individually and then superimposing the solutions:

yp =
1

2
z(t) +

1

2
w(t)

However, it is not really necessary to solve both of these equations. Instead, we can just solve the single
complex equation

z′′ + z′ + 3z = eit

and write the solution as
z(t) = y1(t) + iy2(t).

Then we will have
y′′1 + iy′′2 + y′1 + iy′2 + 3(y1 + iy2) = cos t+ i sin t.

Separating this equation into its real and imaginary parts, we find that

y′′1 + y′1 + 3y1 = cos t

y′′2 + y′2 + 3y2 = sin t

Therefore, the real part of the complex solution,

yp = y1(t) = Re [z(t)]

will be a particular solution of the equation we were trying to solve.

Even though this strategy works a bit more nicely than the first idea (superimposing two complex solutions),
it is worth observing how the two methods are related. The key observation here is that we can find a
particular solution of the equation

w′′ + w′ + 3w = e−it

by taking the complex conjugate of a solution of the equation

z′′ + z′ + 3z = eit

In other words,
w(t) = z(t),

so when we superimpose the solutions we get the particular solution

yp =
1

2
z(t) +

1

2
w(t) =

1

2

(
z(t) + z(t)

)
= Re [z(t)]



5

Method of Undetermined Coefficients. So far we have always been able to solve equations of the form

my′′ + by′ + ky = ert

using ansatz of the form
yp = Aert

However, there are some exceptional cases where this method will fail.

For example, suppose we want to solve an inhomogeneous equation like

y′′ + 4y′ + 3y = e−3t,

where the exponential on the right hand side is a solution of the corresponding homogeneous equation,

y′′ + 4y′ + 3y = 0.

In this case, when we use the standard ansatz y = Ae−3t, we get

9Ae−3t − 12Ae−3t + 3Ae−3t = e−3t,

which leads to the inconsistent equation
0 = e−3t.

So, our method fails to produce a particular solution in this case.

In cases like this, one strategy is to resort to repeated integration. Writing the equation in operator form

(D2 + 4D + 3)y = e−3t

and factoring the operator, we obtain

(D + 3)(D + 1)y = e−3t

We then set
(D + 1)y = u

and solve the equation
(D + 3)u = u′ + 3u = e−3t.

Using the integrating factor J = et we obtain

(e3tu)′ = 1

e3tu = t+ C0

u = te−3t + C0e
−3t

This leaves us with the equation
(D + 1)y = u = te−3t

or
y′ + y = te−3t + C0e

−3t.

Using the integrating factor J = et we obtain

(ety)′ = te−2t + C0e
−2t

ety =

∫
te−2t +

∫
C0e

−2t = −1

2
te−2t +

∫
1

2
e−2t +

∫
C0e

−2t = −1

2
te−2t + C1e

−2t + C2

where C1 and C2 are arbitrary constants. This gives the general solution, This gives the general solution,

y = −1

2
te−3t + C1e

−3t + C2e
−t

Obviously, this is not a method you would want to apply routinely!

A more clever way to solve the equation is to notice that if we apply an operator

mD2 + lD + k

to a function of the form
y = p(t)ert,

where
p(t) = p0 + p1t+ p2t

2 + · · ·+ pnt
n
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is a polynomial function of t, then we obtain

(mD2 + lD + k)p(t)ert = q(t)ert

where
q(t) = q0 + q1t+ q2t

2 + · · ·+ qnt
n

is also a polynomial function of t.

This observation suggests that it might always possible to solve equations of the form

my′′ + ly′ + ky = q(t)ert = (q0 + q1t+ q2t
2 + · · ·+ qnt

n)ert

using an ansatz
y = p(t)ert = (p0 + p1t+ p2t

2 + · · ·+ pdt
d)ert

Making a guess of this form is called the method of undetermined coefficients.

Notice that the degree d of p(t) sometimes needs to be larger than n. We have already seen this in the
example

y′′ + 4y′ + 3y = e−3t.

where n = 0 and a polynomial of degree d = 1 was required. It turns out that in general we must take the
degree of p(t) to be d = n+ 1 if r is a root of the auxiliary equation

mλ2 + lλ+ k = 0

and d = n+ 2 if it is a repeated root.

For example, consider the equation
y′′ − 2y′ + y = et

In this case, 1 is a repeated root of the auxiliary equation

λ2 − 2λ+ 1 = 0,

so we must try an ansatz of the form
y = (At2 +Bt+ C)et

where A, B, and C are unknown constants.

This seems like it might be a lot of work! However, notice that the functions et and tet are solutions of the
corresponding homogeneous equation

y′′h + 2y′h + yh = 0.

Since we are only interested in finding one particular solution of

y′′ − 2y′ + y = et,

we can subtract off these homogeneous solutions and try the simpler ansatz

y = At2et.

Evaluating the derivatives,
y′ = 2Atet +At2et

y′′ = 2Aet + 4Atet +At2et

and substituting, we find that

y′′ − 2y′ + y = At2et + 4Atet + 2Aet − 4Atet − 2At2et +At2et = 2Aet

and therefore we can obtain a particular solution of the equation

y′′ − 2y′ + y = et,

by taking

A =
1

2
or

y =
1

2
t2et.
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Forced Oscillations. Consider a damped oscillator which is governed by an equation

my′′ + ly′ + ky = f(t).

Our goal in this lecture is to understand in detail what happens when the forcing term is a sinusoid,

f(t) = Ad cos(ωdt).

with some amplitude Ad (the driving amplitude) and frequency ωd (the driving frequency).

We have already seen that the equation

my′′ + ly′ + ky = cos(ωdt)

can be solved by recognizing it as the real part of a complex equation

mz′′ + lz′ + kz = eiωdt.

A particular solution of this inhomogeneous equation can be found as a complex exponential of the form

z(t) = Zeiωt,

where Z is a complex number. To solve for Z, we substitute, obtaining an algebraic equation

mZ(iω)2 + lZ(iω) + kZ = 1,

whose solution is

Z = Z(ω) =
1

(k −mω2) + i(lω)

The complex-valued function Z(ω) is called the frequency response function of the oscillator. It is useful to
write this function in polar form, as

Z = Ge−iφ.

The real quantities G = G(ω) and φ = φ(ω) are referred to as the amplitude gain and phase shift, respectively.

With this notation, we have

Re [z(t)] = Re
[
Ge−iφeiωt

]
= Re

[
Gei(ωt−φ)

]
= G cos(ωt− φ)

Therefore, the general solution takes the form

y(t) = yp(t) + yh(t) = G cos(ωt− φ) + yh(t),

where yh(t) is a solution of the homogeneous equation. For a damped oscillator, any solution of the homo-
geneous equation dies off at an exponential rate. Because of this, the term yh(t) is called a transient, and
the term yp(t) is called the steady state response.

More generally, the general solution of

my′′ + ly′ + ky = Ad cos(ωdt).

will be
y = A cos(ωt− φ) + yh(t)

where the steady state response has amplitude

A = GAd.

In other words, the amplitude gain is the ratio of the response amplitude to the driving amplitude:

G =
A

Ad
.

This explains why we call G the amplitude gain.

To summarize: the response of a damped oscillator to a sinusoidal input is the sum of a sinusoidal steady
state response and a transient. The sinusoidal part of the responce has the same frequency as the input,
but its amplitude may be larger or smaller, and it may be phase-shifted (its peaks may not line up with the
peaks of the input).

As a function of ω, the amplitude gain is given by the explicit formula

G(ω) =
1√

(k −mω2)2 + (lω)2
.
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Notice that as ω tends to ∞, the amplitude gain tends to 0. This is familiar to any child who has been on
a swing - if you sit and swing your legs rapidly back and forth, barely anything happens. To get the swing
moving, you have to instead match the frequency of your leg motion to the resonant frequency of the swing.

By definition, the resonant frequency of an oscillator is the frequency at which the maximum amplitude gain
is realized. We can calculate the resonant frequency of any oscillator theoretically, by using calculus to find
the maximum value of the gain function G(ω), or equivalently the minimum value of

1

G(ω)2
= (k −mω2)2 + (lω)2 = m2ω4 + (l2 − 2mk)ω2 + k2.

We do this by taking the first derivative with respect to ω:

d

dω

1

G(ω)2
= 4m2ω3 + 2(l2 − 2mk)ω

Setting this equal to zero, we see that (for ω ≥ 0) there are two critical points,

ω = 0 and ω =

√
2km− l2

2m2
.

The second critical point only exists when the quantity inside the square root is real:

l2 ≤ 2km.

If l2 ≥ 2km, then ω = 0 is a global maximum - otherwise it is a local minimum. Here are plots of G(ω)2

which illustrate these two cases:

1 2 3 4 5

−1

1

2

Recall that critical damping occurs when l2 = 4mk. It follows that overdamped oscillators (and some
underdamped oscillators) do not resonate - resonance only occurs if the oscillator is highly underdamped.

So far we have only discussed the case of a damped oscillator (b > 0). In the case of an undamped harmonic
oscillator, the phenomenon of resonance presents in a slightly different way. In this case, the amplitude gain
is given by

G =
1

k −mω2
.

In this case, the amplitude gain becomes infinite when

ω =

√
k

m
= ω0,

i.e. when the input frequency matches the natural frequency of the oscillator.

In particular, the usual exponential ansatz will fail in the resonant case ω = ω0. To illustrate this, consider
the simplest case

y′′ + y = cos t.

In this case, the complexified equation is
z′′ + z = eit,
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and when we try the ansatz
z(t) = Zeit

we get the inconsistent equation
−Zeit + Zeit = 0 = eit.

To get around the difficulty, we can use the ansatz specified by the method of undetermined coefficients,

z = Ateit.

Differentiating this ansatz we obtain
z′ = Aeit +Aiteit

z′′ = 2Aieit −Ateit

This leads to the equation
2Aieit −Ateit +Ateit = eit

and we conclude that

A =
1

2i
Therefore a particular solution of the complexified equation is

z =
t

2i
eit =

1

2
t sin t− it

2
cos t.

Taking the real part, we obtain the particular solution

yp =
1

2
t sin t,

and conclude that the general solution is

y = yp + yh =
1

2
t sin t+ a cos t+ b sin t.

Notice that any such solution oscillates between larger and larger values in the limit as t→∞:

2 4 6 8 10

−10

−5

5

10

In this sense, harmonic oscillators are unstable -z a small (bounded) input can potentially lead to an arbi-
trarily large (unbounded) output. From a practical point of view, this instability also manifests itself for
oscillators which are insufficiently damped - such an oscillator can be forced to oscillate very violently, even
by an input of modest amplitude, if the input frequency is close to the resonant frequency. This can have
catastrophic results (bridges collapsing, overloaded circuits, etc.) and responsible engineers must take it into
account.

For some interesting examples of resonance, see the following videos:

https://www.youtube.com/watch?v=4pEVl2Q86QM&ab_channel=xmdemo

https://www.youtube.com/watch?v=3mclp9QmCGs&ab_channel=SimonLesp%C3%A9rance

https://www.youtube.com/watch?v=4pEVl2Q86QM&ab_channel=xmdemo
https://www.youtube.com/watch?v=3mclp9QmCGs&ab_channel=SimonLesp%C3%A9rance
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