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Markov inequalities

If X is a random variable that takes only nonnegative values, then,
for any value a > 0

P{X ≥ a} ≤ E[X ]

a

Proof. Consider

I =

{
1 if X ≥ a
0 otherwise
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Chebyshev’s inequality

If X is a random variable with finite mean µ and variance σ2, then,
for any value k > 0

P{|X − µ| ≥ k} ≤ σ2

k2

Proof. Note that (X − µ)2 is then a nonnegative random variable,
we can apply Markov’s inequality to it.
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Corollary

If Var(X ) = 0, then

P{X = E[X ]} = 1



Example: the inequalities are inaccurate

I Consider X is uniformly distributed over the interval (0, 10).

I What is its mean and variance?

E[X ] = 5, Var(X ) = 25
3 .

I How to estimate P{|X − 5| > 4}?
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Theorem

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables, each having finite mean E [Xi ] = µ.
Then, for any ε > 0,

P

{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε}→ 0 as n→∞



How to prove it?

I Theorem applies without any additional assumption.

I But here we assume that the random variables have a finite
variance σ2.

I Now,

E

[
X1 + · · ·+ Xn

n

]
= µ and Var

(
X1 + · · ·+ Xn

n

)
=
σ2

n

I Lastly, from Chebyshev’s inequality that

P

{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε} ≤ σ2

nε2
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Example: Concentration of Gamma r.v.

If {Xi} are independent gamma random variables with parameters
(1, 1), approximately how large need n be so that

P

{∣∣∣∣X1 + X2 + · · ·+ Xn

n
− 1

∣∣∣∣ > .01

}
< .01?
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Definition

The moment generating function M(t) of the random variable X is
defined for all real values of t by

M(t) = E
[
etX
]

=

{ ∑
x e

txp(x) if X is discrete with mass function p(x)∫∞
−∞ etx f (x)dx if X is continuous with density f (x)



Derivaties

First,

M ′(t) =
d

dt
E
[
etX
]

= E
[
d

dt

(
etX
)]

= E
[
XetX

]
So,

M ′(0) =

E[X ].

What’s more?
Mn(t) = E

[
X netX

]
n ≥ 1

implying that
Mn(0) = E [X n] n ≥ 1
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