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Revision: Expected Value of a function of a r.v.

If X and Y have a joint probability mass function p(x , y), then

E [g(X ,Y )] =

∑
y

∑
x

g(x , y)p(x , y)

If X and Y have a joint probability density function f (x , y), then

E [g(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)f (x , y)dxdy
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Derivation

Suppose that E [X ] and E [Y ] are both finite and let
g(X ,Y ) = X + Y . Then, in the continuous case,

E [X + Y ] =

∫ ∞
−∞

∫ ∞
−∞

(x + y)f (x , y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xf (x , y)dydx +

∫ ∞
−∞

∫ ∞
−∞

yf (x , y)dxdy

=

∫ ∞
−∞

xfX (x)dx +

∫ ∞
−∞

yfY (y)dy

= E [X ] + E [Y ]

What about E [X1 + · · ·+ Xn]?
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Sample Mean

Let X1, . . . ,Xn be independent and identically distributed random
variables having distribution function F and expected value µ.
Then X1, . . . ,Xn is said to constitute a sample from the
distribution F .

The quantity

X̄ =
n∑

i=1

Xi

n

is called the sample mean.
Now what is E [X̄ ]?

Note: when the distribution mean µ is unknown, the sample mean
is often used in statistics to estimate it.
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Example: hat matches

Suppose that N people throw their hats into the center of a room.
The hats are mixed up, and each person randomly selects one.
Find the expected number of people that select their own hat.



Example: A Summation Formula

Consider any nonnegative, integer-valued random variable X . If, for
each i ≥ 1, we define

Xi =

{
1 if X ≥ i
0 if X < i

then E [X ] =
∑∞

i=1 E (Xi )

Note E (Xi ) = P{X ≥ i}, so

E [X ] =
∞∑
i=1

P{X ≥ i}

a useful identity.
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Example: Sorting elements

Suppose that n elements, 1, 2, · · · , n must be stored in a computer
in the form of an ordered list. Each unit of time, a request will be
made for one of these elements i being requested, independently of
the past, with known probability P(i), i ≥ 1,

∑
i P(i) = 1.

What ordering minimizes the average position in the line of the
element requested?

Suppose that the elements are numbered so
that P(1) ≥ P(2) ≥ · · · ≥ P(n). Let X denote the position of the
requested element. Now, under any ordering, O = i1, i2, . . . , in,

PO{X ≥ k} =
n∑

j=k

P (ij)
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