
Math 18500 - Problem Set 4

I Solve the following initial value problems using the “exponential ansatz” method:
(a) Substitute y = eλt and find all values of λ which satisfy the equation. If two real values of λ are

possible, then you obtain two real exponential solutions and can proceed to step (3).
(b) If you get a complex value of λ, find the real and imaginary part of eλt. These are both real

solutions of the equation - take them and proceed to step (3).
(c) Apply the superposition principle and obtain the general solution as a linear combination of the

two real solutions you have found so far.
(d) Find the coefficients of the linear combination which satisfy the given initial conditions.
a. y′′ + 2y′ − 15y = 0 , y(0) = 3 , y′(0) = 2
b. y′′ + y′ = 0 , y(0) = 0 , y′(0) = −2
c. y′′ + 2y′ + 2y = 0 , y(π) = 0 , y′(π) = 1

II Consider the equations
y′′ + 6y′ + 9y = 0 , y′′ − 3y′ + 2y = 0

a. Write each ODE in operator form as

(D2 + aD + b)y = 0,

where the operator D is defined by Dy = y′, and D2 means “apply D twice in a row”. In each
case, find a factorization

D2 + aD + b = (D − λ1)(D − λ2).

b. For one equation, you should have λ1 ̸= λ2. In this case, show that the order in which you apply
the operators D − λ1 and D − λ2 doesn’t matter. In other words,

(D − λ1)(D − λ2)y = (D − λ2)(D − λ1)y.

c. For the other equation you should have λ1 = λ2. Find the general solution by repeated integration.
III It is often useful to consider second order equations with boundary conditions, where instead of specify-

ing initial values y(t0) and y′(t0) we specify values y(t0) and y(t1) at an initial time t0 and a final time
t1. Problems of this form are called boundary value problems.

To find all solutions of a boundary value problem, you just produce the general solution of the equation
in terms of two unpecified coefficients c1 and c2, and then substitute the times t0 and t1. This gives you
a system of equations which you can try to solve for c1 and c2.

However, solutions of boundary value problems are not guaranteed to exist, and sometimes a boundary
value problem will have more than one solution! The following problem illustrates that phenomenon.
a. Find the unique solution of the boundary value problem

y′′ − 4y = 0 , y(0) = 0 , y(ln(2)) = 15

b. Find an infinite number of solutions of the boundary value problem

y′′ + 4y = 0 , y(0) = 0 , y(π) = 0

c. Show that the boundary value problem

y′′ + 4y = 0 , y(0) = 0 , y(π) = 1

has no solution.
d. (Optional) In general, what conditions on t0, t1, y0, y1, and k are needed in order to guarantee

that the boundary value problem

y′′ + ky = 0 , y(t0) = y0 , y(t1) = y1

has exactly one solution?
IV Consider the third order linear homogeneous equation

y′′′ + y′′ + y′ + y = 0

a. Find all of the exponential solutions of this equation (real and complex).
Hint: For all values of a and b we have the factorization y3 + ay2 + by + ab = (y + a)(y2 + b).
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b. For each complex exponential solution, show that its real and imaginary parts are also solutions.
c. In parts a and b you should have obtained three real solutions y1(t), y2(t), y3(t). If c1, c2, c3 are

arbitrary real constants, show that the linear combination y = c1y1 + c2y2 + c3y3 is also a solution.
d. Solve the initial value problem

y′′′ + y′′ + y′ + y = 0 , y(0) = 2 , y′(0) = 1 , y′′(0) = 0

V Consider a damped oscillator which is modelled by an equation

my′′ + ly′ + ky = 0

where m = 2, k = 4, and l ≥ 0.
a. Write the auxiliary equation and express its roots in terms of l.
b. In the absence of damping (l = 0), find a positive value of ω0 such that the general solution of the

equation is a linear combination of sin(ω0t) and cos(ω0t).
Recall that ω0 is called the natural frequency of the oscillator.

c. Recall that an oscillator is said to be overdamped if its solutions take the form

y = c1e
−µ1t + c2e

−µ2t

where µ1 and µ2 are distinct positive real numbers. For an overdamped oscillator, give a formula
(in terms of µ1 and µ2) for the solution which satisfies the initial conditions y(0) = 0 and y′(0) = 1.

d. Recall that an oscillator is said to be underdamped if its solutions take the form

y = c1e
−µt cos(ωt) + c2e

−µt sin(ωt)

where µ and ω are positive real numbers. For an underdamped oscillator, give a formula (in terms
of µ and ω) for the solution which satisfies the initial conditions y(0) = 0 and y′(0) = 1.

e. Recall that an oscillator is said to be critically damped if its solutions take the form

y = c1te
−µt + c2e

−µt

where µ is a positive real number. For a critically damped oscillator, give a formula (in terms of
µ) for the solution satisfying the initial conditions y(0) = 0 and y′(0) = 1.

f. For which values of l is the oscillator overdamped, underdamped, and critically damped? In each
of these cases, give formulas for µ1, µ2, µ, ω (whichever is applicable) in terms of l.

g. In the underdamped case, is ω greater or less than the natural frequency ω0?
h. In the cases l = 4 and l = 6, and also in the critically damped case, find the solution satisfying

y(0) = 0 and y′(0) = 1.
i. Carefully plot each of the solutions from part h. In the overdamped and critically damped cases,

find the point in time where the solution achieves its maximum value and mark this in your plot.
In the underdamped case, mark the points where the solution touches its “exponential envelope”
and where it crosses the t axis.

k. What happens if l < 0? Plot a few possible solutions in this case and explain why the equation

my′′ + ly′ + ky = 0

would not correspond to a realistic model of any physical system.
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