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Abstract

Summary of Stochastic process and Brownian motion

1 Stochastic Processes

Sequence of r.v.’s X1, X2, · · · , Xn, · · · occuring at discrete times t1 < t2 · · · < tn < · · · is
called a discrete stochastic process, with joint distribution FXi1

,Xi2
,··· ,Xij

, ij = 1, 2, · · · as
its probability law.

Gaussian Process: all joint distributions are Gaussian.

Continuous Stochastic Process: X(t) = X(t, ω), t ∈ [0, 1] or [0,∞), over probability space
(Ω, A, P ), is a function of two variables, X : [0, 1] × Ω → R, where X is a r.v. for each t,
for each ω, we have a sample path (a realization) or trajectory of the process.
• Quantities on time variability: µ(t) = E(X(t)), σ2(t) = V ar(X(t)), covariance:

C(s, t) = E((X(s)− µ(s))(X(t)− µ(t))),

for s 6= t.
• Process with independent increment: X(tj+1)−X(tj), j = 0, 1, 2, · · · .

Standard Wiener Process (Brownian Motion): Gaussian process W (t), t ≥ 0, with inde-
pendent increment, and:

W (0) = 0 w.p.1, E(W (t)) = 0, V ar(W (t)−W (s)) = t− s,
for all s ∈ [0, t].
B.M. Covariance: C(s, t) = min(s, t).

Stationary Process: all joint distributions are translation (along time) invariant.

Ornstein-Uhlenbeck Process: Gaussian process with X(0) unit Gaussian, E(X(t)) = 0,
covariance E(XsXt) = e−γ|t−s| for s, t ∈ R, γ > 0.

B.M. Covariance: C(s, t) = min(s, t), not stationary. O-U stationary.
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2 Diffusion Process

Suppose joint distribution of X(t) has density p(t1, x1; t2, x2; · · · ; tk, xk), define conditional
probability:

P (X(tn+1) ∈ B|X(ti) = xi, i = 1 : n) =∫
B
p(t1, x1, · · · , tn, xn; tn+1, y) dy∫
p(t1, x1, · · · , tn, xn; tn+1, y) dy

for B any Borel set of R.

• Markov Process if:

P (X(tn+1) ∈ B|X(ti) = xi, i = 1 : n) = P (X(tn+1) ∈ B|X(tn) = xn).

Transition probability:

P (s, x; t, B) =

∫
B

p(s, x; t, y) dy,

p transition density.

Wiener:

p(s, x; t, y) =
1√

2π(t− s)
exp{−(y − x)2

2(t− s)
},

O-U: (γ = 1)

p(s, x; t, y) =
1√

2π(1− e−2(t−s))
exp{−(y − xe−(t−s))2

2(1− e−2(t−s))
},

Chapman-Kolmogorov (C-K) equation:

p(s, x; t, y) =

∫
R1

p(s, x; τ, z) p(τ, z; t, y) dz,

for s ≤ τ ≤ t.

The transition density of Wiener obeys equations:

pt =
1

2
pyy, (s, x) fixed

forward equation,

ps = −1

2
pxx, (t, y) fixed
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backward equation.

• Markov process with transition density is called diffusion process if the following limits
exist:
Jump:

lim
t→s+

1

t− s

∫
|y−x|>ε

p(s, x; t, y)dy = 0,

Drift:

lim
t→s+

1

t− s

∫
|y−x|≤ε

(y − x)p(s, x; t, y)dy = a(s, x),

Diffusion:

lim
t→s+

1

t− s

∫
|y−x|≤ε

(y − x)2 p(s, x; t, y)dy = b2(s, x).

Alternatively:

a(s, x) = lim
t→s+

1

t− s
E(X(t)−X(s)|X(s) = x),

b2(s, x) = lim
t→s+

1

t− s
E((X(t)−X(s))2|X(s) = x).

a: drift coefficient, b: diffusion coefficient.
Wiener: (a, b) = (0, 1), O-U: (a, b) = (−γ x,

√
2γ). (Calculation in next part)

• Kolmogorov equation:
Forward:

pt + (a(t, y)p)y =
1

2
(b2(t, y)p)yy,

Backward:

ps + a(s, x)px = −1

2
b2(s, x)pxx.

Forward equation is also called Fokker-Planck equation.

3 Calculating Drift and Diffusion

For Brownian motion, using independence of increment, we see that:

E(X(t)−X(s)|X(s) = x) = 0,

so

a(s, x) = lim
t→s+

1

t− s
E(X(t)−X(s)|X(s) = x) = 0;

E((X(t)−X(s))2|X(s) = x) = t− s,
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b2(s, x) = lim
t→s+

1

t− s
E((X(t)−X(s))2|X(s) = x) = 1.

Hence by Gaussian process:

p(s, x; t, y) =
1√

2π(t− s)
exp{−(y − x)2

2(t− s)
}.

implying that BM satisfies:

E(|X(t)−X(s)|4) = 3|t− s|2, ∀ s, t ≥ 0.

O-U:
Fact: τ ≥ 0, X(t+ τ)− e−γtX(τ) is independent of (ω : X(s), s ≤ τ).

Covariance (s ≤ τ):

E[(X(t+ τ)− e−γtX(τ))X(s)] = C(s, t+ τ)− e−γtC(s, τ)

= e−γ|t+τ−s| − e−γt−γ|τ−s|

= 0. (3.1)

At the same time, X is a Gaussian process.

To find transition probability:

P (X(t+ τ) ∈ A|X(τ) = x) =

P (X(t+ τ)− e−γtX(τ) ∈ A− e−γtX(τ)|X(τ) = x)

= P (X(t+ τ)− e−γtX(τ) ∈ A− e−γtx). (3.2)

R.V. X(t+ τ)− e−γtX(τ) is mean zero, Gaussian, and has variance:

E[(X(t+ τ)− e−γtX(τ))2] =

E[(X(t+ τ)− e−γtX(τ))X(t+ τ)]

= 1− e−2γt. (3.3)

(3.2) and (3.3) imply:

p(s, x; t, y) =
1√

2π(1− e−2γ(t−s))
exp{−(y − xe−γ(t−s))2

2(1− e−2γ(t−s))
}.

Calculate drift:

E(X(t)−X(s)|X(s) = x) = E[X(t)− e−γ|t−s|X(s)

+e−γ|t−s|X(s)−X(s)|X(s) = x]

= (e−γ|t−s| − 1)x, (3.4)
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a(s, x) = −γx.

Calculate diffusion:

E((X(t)−X(s))2|X(s) = x) = E[(X(t)− e−γ|t−s|X(s)

+(e−γ(t−s) − 1)x)2]

= 1− e−2γ(t−s) + (e−γ(t−s) − 1)x)2, (3.5)

b2(s, x) = 2γ.

Over small time interval [s, t], using drift-diffusion information, we see that O-U is related
to BM as (to leading order):

X(t)−X(s) = −γX(s)(t− s) +
√

2γ(W (t)−W (s)),

where W (t) denotes BM; or in differential form:

dX = −γXdt+
√

2γdW,

The term −γXdt physically means damping.

4 From Random Walk to Brownian Motion

Divide time interval [0, 1] into N equal length subintervals [ti, ti+1], i = 0, 1, · · · , N . Con-
sider a walker making steps ±

√
δt, δt = 1/N with probability 1/2 each, starting from

x = 0. In n steps, the walker’s location is:

SN(tn) =
√
δt

n∑
i=1

Xi, (4.6)

where Xi are independent two point r.v’s taking ±1 with equal probability. Define a
piecewise continuous function:

SN(t) = SN(tn), t ∈ [tn, tn+1], n ≤ N − 1.

SN has independent increment X1

√
δt, X2

√
δt etc for given subintervals, and in the

limit N →∞ tends to a process with independent increment. Moreover:

E(SN) = 0, V ar(SN(t)) = δt

[
t

δt

]
.

In the limit N → ∞, V ar(SN(t)) → t. Applying Central Limit Theorem,∀t, the
approximate process SN(t) converges in law to a process with independent increment, zero
mean, variance t, and Gaussian. So it is a BM.
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Using SN(t) is a way to numerically construct BM as well. The Xi’s are generated from
U(0, 1) as: Xi = 1 if U ∈ [0, 1/2]; Xi = −1, if U ∈ (1/2, 1]. A shortcut is to replace two
point Xi’s by i.i.d unit Gaussian r.v’s. Try the 2 line Matlab code to generate a BM sample
path:

randn(’state’,0); N=1e4; dt=1/N;
w=sqrt(dt)*cumsum([0;randn(N,1)]); plot([0:dt:1],w);

cumsum is a fast summation on vector input. Change the state number from 0 to 10 (or a
larger number if you are having fun !) to see different sample paths (see Figure 1).
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Figure 1: Four Sample Paths of Numerical Approximation of Brownian Motion on [0,1].

BM sample path is almost surely continuous. Kolmogorov criterion:

E(|X(t)−X(s)|a) ≤ C|t− s|1+b,

for a, b, C positive. For BM, a = 4, b = 1, C = 3.

Kolmogorov Continuity Theorem:
Let (S, d) be some complete metric space, and let X : [0,+∞)×Ω→ S be a stochastic

process. Suppose that for all times T > 0, there exist positive constants α, β,K such that
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E [d (Xt, Xs)
α] ≤ K|t− s|1+β for all 0 ≤ s, t ≤ T . Then there exists a modification X̃ of X

that is a continuous process,
i.e. a process X̃ : [0,+∞)× Ω→ S such that

• X̃ is sample-continuous;

• for every time t ≥ 0,P
(
Xt = X̃t

)
= 1 (modification)

Furthermore, the paths of X̃ are locally γ -Hölder-continuous for every 0 < γ < β
α

.

5 BM via Random Fourier Series

Let Yi, i = 1, 2, · · · be independent, N(0, 1); ϕk(t) be defined on closed interval I such that

∞∑
k=1

|ϕk(t)|2 <∞, t ∈ I.

∞∑
k=1

E|ϕk(t)Yk|2 =
∞∑
k=1

|ϕk(t)|2 <∞,

so:

Z(t) =
∞∑
k=1

ϕk(t)Yk,

converges a.s. in t.
E[Z(t)] = 0, covariance:

C(t, s) =
∞∑
k=1

ϕk(t)ϕk(s),

To match Z with BM, require:

min(t, s) =
∞∑
k=1

ϕk(t)ϕk(s).

Let I = [0, π], fact:

min(t, s) =
ts

π
+

2

π

∑
k≥1

sin kt sin ks

k2
.

W (t) = BM =
t√
π
Y0 +

√
2

π

∑
k≥1

sinmt

m
Ym, (5.7)

t ∈ [0, π], W (t) standard BM. By truncating the random Fourier series, we have a second
way to generate BM.
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6 Spectral Representation

Consider stationary process, e.g. O-U. Covariance C(t, s) = C(t − s), C(·) even function,
and: ∀{ai} ⊂ R, ∑

k,j

akajC(tk − tj) = E(|
∑
k

akX(tk)|2) ≥ 0,

C(·) is nonnegative definite and symmetric. Bochner theorem:

C(t) =

∫ ∞
−∞

e2πitλ dF (λ), (6.8)

F (λ) is nondecreasing, right continuous, F (+∞) − F (−∞) = C(0). We call F spectral
distribution function of process X(t), F ′(λ) spectral density.

F ′(λ) =

∫
R1

C(s)e−2πiλs ds =

∫
R1

C(s) cos(2πλs) ds. (6.9)

Just like finding a random Fourier series for BM from its covariance, one can construct a
random Fourier integral for X(t):
Let Z(λ) be a process with orthogonal increments:

E[(Z(a)− Z(b))(Z(a′)− Z(b′))] = 0,

if (a, b) ∩ (a′, b′) empty, and

E[(Z(a)− Z(b))2] = F (a)− F (b),

Now:

X(t) =

∫ ∞
−∞

e2πitλ dZ(λ). (6.10)

The random integral
∫
g(λ) dZ(λ) is defined as mean square limit of finite Stieltjes sum:∑

gk[Z(λk)− Z(λk−1)],

if g ∈ L2(dF ).
Examples of Spectral Densities:
(1) O-U: C(s) = e−γ|s|, taking Fourier transform (6.9):

F ′(λ) =
2γ

γ2 + 4π2λ2
.

(2) Gaussian white noise: F ′(λ) = constant, C(s) = c0δ(s).
Appoximated by:

Xh(t) = (W (t+ h)−W (t))/h,
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small h > 0. Process Xh has covariance and spectral density:

Ch(s, t) =
1

h
max(0, 1− |t− s|/h),

F
′

h(λ) = sin2(2πλh)/(πλh)2,

broad band spectrum, Xh called colored noise. In the limit h → 0, Ch converges to delta
function, Xh converges in some weak sense to white noise.
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