Lecture 2: Stochastic Process, Brownian Motion.

Zhongjian Wang*

Abstract
Summary of Stochastic process and Brownian motion

1 Stochastic Processes

Sequence of r.v.’s X1, Xo, -+, X, -+ occuring at discrete times t; < ty--- < t, < --- is
called a discrete stochastic process, with joint distribution Fly, . Xigo Xip 1 =1,2,--- as
its probability law.

Gaussian Process: all joint distributions are Gaussian.

Continuous Stochastic Process: X (t) = X (t,w), t € [0,1] or [0,00), over probability space
(Q, A, P), is a function of two variables, X : [0,1] x © — R, where X is a r.v. for each t,
for each w, we have a sample path (a realization) or trajectory of the process.

e Quantities on time variability: u(t) = E(X(t)), 0%(t) = Var(X(t)), covariance:

C(s,t) = B((X(s) = u(s))(X () — u(1))),
for s # t.
e Process with independent increment: X (¢;11) — X (¢;), 7=0,1,2,---.

Standard Wiener Process (Brownian Motion): Gaussian process W(t), t > 0, with inde-
pendent increment, and:

W(0)=0w.p.l, E(W(t)) =0, Var(W(t) —W(s)) =t — s,

for all s € [0,¢].
B.M. Covariance: C(s,t) = min(s,t).

Stationary Process: all joint distributions are translation (along time) invariant.

Ornstein-Uhlenbeck Process: Gaussian process with X (0) unit Gaussian, E(X(t)) = 0,
covariance F(X,X,) = e 1 for s,t € R, v > 0.

B.M. Covariance: C(s,t) = min(s,t), not stationary. O-U stationary.
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2 Diffusion Process

Suppose joint distribution of X (¢) has density p(t1, x1; ta, xo; - -+ ; tg, xx), define conditional
probability:

fB p(tla Z1,c 0 o, T thrla y) dy

f p(tla Ly, 7tn7 Ly tn+17 y) dy

for B any Borel set of R.

e Markov Process if:
Transition probability:

P(s,x;t,B)Z/ p(s, x;t,y) dy,
B

p transition density:.

Wiener:
Gy L (y—a)
O-U: (y=1)
1 (y — we=(t79)2

p(s,x;t,y) =

Var—emm) P o ey
Chapman-Kolmogorov (C-K) equation:

p(s, 73 t,y) = / p(s, 7, 2) plr, 2, y) dz,
Rl
for s <71 <t

The transition density of Wiener obeys equations:

1
by = §pyy7 (Sa {L‘) fixed

forward equation,

1
Ps = _§pxx7 (tu y) fixed



backward equation.

e Markov process with transition density is called diffusion process if the following limits
exist:

Jump: X
Jim /ly_xbep(s,xyt,y)dy =0,
Drift:
i [ (- op(smit)dy = als,a),
t—st T — 8 ly—z|<€
Diffusion:
lim — / (y —2)?p(s, z;t,y)dy = b*(s, x).
t=st =5 Jjy_q)<e
Alternatively:

E(X(t) — X(s)|X(s) = x),

V2 (s, ) = hm+t
t—s — S

E((X(t) = X(s))*|X(s) = o).

a: drift coefficient, b: diffusion coefficient.
Wiener: (a,b) = (0,1), O-U: (a,b) = (—yx,+/27). (Calculation in next part)

e Kolmogorov equation:
Forward:

1
pe + (alt,y)p), = 5(62(15, YD) gy,
Backward: 1
ps +a(s,z)p, = —§b2(8, ) Pra-

Forward equation is also called Fokker-Planck equation.

3 Calculating Drift and Diffusion

For Brownian motion, using independence of increment, we see that:
E(X(t) - X(s)[X(s) = x) =0,

SO

a(s, ) = lim —— E(X(t) — X ()| X(s) = 2) = 0:

tst T — 8



B (s, ) = lim —— B((X(t) — X(s))2|X(s) = ) =
t—stt— 8§
Hence by Gaussian process:

(y — x)?

1
p(s,z;t,y) = \/ﬁexp{— 2t —s)

implying that BM satisfies:

}.

E(IX(t) — X(s)|") = 3|t — s[>, Vs, > 0.

O-U:
Fact: 7 >0, X(t +7) — e 7' X(7) is independent of (w: X(s),s < 7).
Covariance (s < 7):

E[(X(t+71)—e V"X(T)X(s)] = CO(s,t+7)—e 1'C(s,7)
6—’}/\t+7'—s| . e—"}/t—"}/|7'—s|
= 0.

At the same time, X is a Gaussian process.
To find transition probability:

PX(t+71)e AlX(1)=12) =
PX(t+71)—e 'X(1) € A—e ' X(1)|X (1) = 2)
= PX(t+7)—eMX(1) € A—e ).

R.V. X(t +7) — e 7' X (7) is mean zero, Gaussian, and has variance:

E[(X(t+7)—e 1'X(1))*] =
E[(X(t+71)—e VX(r)X(t+7)]

=1—e 2
(3.2) and (3.3) imply:
1 (y — ze™V=9))2
p<87 Z; 7y> \/271_(1 — 6727@75)) eXp{ 2(1 _ 6—2’}/(1573)) }

Calculate drift:
E(X(t)— X(s)|X(s) =) = E[X(t) — e‘wt_s‘X(s)

+e M=l X (5) — X(5)| X (s) = 2]
= (7l — 1),



a(s,r) = —yz.
Calculate diffusion:
E((X(t) = X(5))*|X(s) = ) = E[(X () — e 71X (s)

+(e T —1)a)?]
=1 — e 2709 4 (7729 _ 1)g)2, (3.5)

b2 (s, ) = 27.

Over small time interval [s, t], using drift-diffusion information, we see that O-U is related
to BM as (to leading order):

X(t) = X(s) = =7 X(s)(t = 5) + /29(W(1) = W(s)),
where W(t) denotes BM; or in differential form:

dX = —yXdt + \/2vdW,
The term —vXdt physically means damping.

4 From Random Walk to Brownian Motion

Divide time interval [0, 1] into N equal length subintervals [t;,t;41], ¢ = 0,1,--- , N. Con-
sider a walker making steps £+/6t, 0t = 1/N with probability 1/2 each, starting from
x = 0. In n steps, the walker’s location is:

Sn(tn) = \/Eix (4.6)

where X, are independent two point r.v’'s taking +1 with equal probability. Define a
piecewise continuous function:

SN(t) = SN(tn), t e [tnatn—i-l]a n < N — 1.

Sy has independent increment Xlx/&, Xo\/6t ete for given subintervals, and in the
limit N — oo tends to a process with independent increment. Moreover:

ot

In the limit N — oo, Var(Sy(t)) — t. Applying Central Limit Theorem,Vt, the
approximate process Sy (t) converges in law to a process with independent increment, zero
mean, variance t, and Gaussian. So it is a BM.

E(Sy) =0, Var(Sy(t)) = 6t {1] .
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Using Sn(t) is a way to numerically construct BM as well. The X;’s are generated from
U(0,1)as: X; =1ifU €[0,1/2]; X; = —1,if U € (1/2,1]. A shortcut is to replace two
point X;’s by i.i.d unit Gaussian r.v’s. Try the 2 line Matlab code to generate a BM sample
path:

randn(’state’,0); N=1e4; dt=1/N;

w=sqrt(dt)*cumsum([0;randn(N,1)]); plot([0:dt:1],w);
cumsum is a fast summation on vector input. Change the state number from 0 to 10 (or a
larger number if you are having fun !) to see different sample paths (see Figure 1).

251 H

Figure 1: Four Sample Paths of Numerical Approximation of Brownian Motion on [0,1].

BM sample path is almost surely continuous. Kolmogorov criterion:
E(1X(t) = X(s)]) < CJt — s|'™",
for a, b, C positive. For BM, a=4,b=1, C = 3.

Kolmogorov Continuity Theorem:
Let (S, d) be some complete metric space, and let X : [0, +00) x Q — S be a stochastic
process. Suppose that for all times 7" > 0, there exist positive constants «, 3, K such that

6



E[d (X, X,)*] < K|t — s|"*? for all 0 < s, < T. Then there exists a modification X of X
that is a continuous process,
i.e. a process X : [0, +00) X 2 — S such that

e X is sample-continuous;
o for every time ¢t > 0,P (Xt = Xt> = 1 (modification)

B

o

Furthermore, the paths of X are locally « -Holder-continuous for every 0 < v <

5 BM via Random Fourier Series

Let Y;, 2 =1,2,--- be independent, N (0, 1); ¢, (t) be defined on closed interval I such that

S letlF < oo, tel.
k=1

Y Blon®Yal =) lew(®) < oo,
k=1 k=1

SO:

Zt) =3 oY,

converges a.s. in t.
E[Z(t)] = 0, covariance:

C(ta 8) = Z Spk:(t) gOk(S)7
k=1
To match Z with BM, require:
min(t, s) = Z er(t) i(s).
k=1

Let I = [0, x|, fact:

) ts 2 sin kt sin ks
min(t, s) = — + ;ZT
E>1

t 2 sin mt
W(t) = BM = ﬁyb + \/;Z — Yo, (5.7)

k>1

t € [0, 7], W(t) standard BM. By truncating the random Fourier series, we have a second
way to generate BM.



6 Spectral Representation

Consider stationary process, e.g. O-U. Covariance C(t,s) = C(t — s), C(+) even function,
and: V{a;} C R,

Zakaj tk—t |ZakX tk; =~ ,

C'(+) is nonnegative definite and symmetric. Bochner theorem:

C(t) = / T emith g, (6.8)

[e.e]

F(\) is nondecreasing, right continuous, F(+o00) — F(—o0) = C(0). We call F' spectral
distribution function of process X (t), F'(\) spectral density.

F'(\) = /R 1 O(s)e™2mAs gs = / C(s) cos(2mAs) ds. (6.9)

R
Just like finding a random Fourier series for BM from its covariance, one can construct a
random Fourier integral for X (¢):
Let Z(\) be a process with orthogonal increments:

if (a,b) N (a’,b") empty, and

Now:

X(t) = /_ T e\ g7 0. (6.10)

[e.9]

The random integral [ g(\) dZ()) is defined as mean square limit of finite Stieltjes sum:

ng Z(Ak-1)],

if g € L?(dF).
Examples of Spectral Densities:
(1) O-U: C(s) = e~ 7l taking Fourier transform (6.9):

2y
FFA) = ————.
9@ 72 + 4m2)\?
(2) Gaussian white noise: F'(\) = constant, C(s) = ¢yd(s).

Appoximated by:
Xn(t) = (W(t+h)=W(t)/h,
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small A > 0. Process X" has covariance and spectral density:

C(s 1) = %max(o, 1= |t — s|/R),

F, (\) = sin®(2nAh) /(mAh)?,

broad band spectrum, X, called colored noise. In the limit A — 0, C}, converges to delta
function, X, converges in some weak sense to white noise.



