Week 3 Statistics 251

Zhongjian Wang

Department of Statistics The University of Chicago

Where are we?

Random variables

Probability mass function and distribution function

Definition of expectation

Expectation of functions of a random variable

Definition of variance

Properties of variance

Decomposition into indicator variables

- A **random variable** X is a function from the state space S to the real numbers.
- Interpretation: X is a quantity depending on the outcome in S

Example: Toss n coins so S is the set of 2^n coin sequences.

► X = {number of heads} maps a sequence to the num. of heads

•
$$\mathbb{P}(X = k) = \frac{\#\{\text{sequences with } k \text{ heads}\}}{|S|} = \frac{\binom{n}{k}}{2^n}$$

Examples

Shuffle n cards and let X be the position of card 1.

- X has values in $\{1, \ldots, n\}$
- What is $\mathbb{P}(X = k)$?

Roll 3 dice and let Y be the sum of the values. What is $\mathbb{P}(Y = 5)$?

The indicator random variable of an event E is

$$\mathbf{1}_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

If E_1, \ldots, E_k are events, then $X = \sum_{i=1}^k \mathbf{1}_{E_i}$ is the number of events which occur.

Random variables

Probability mass function and distribution function

Definition of expectation

Expectation of functions of a random variable

Definition of variance

Properties of variance

Decomposition into indicator variables

A random variable X is **discrete** if its values lie in a countable set.

The probability mass function is $p_X(a) = \mathbb{P}(X = a)$.

If A is the countable set of all possible values of X, we have

$$\sum_{a\in A}p_X(a)=1.$$

Cumulative distribution function

The cumulative distribution function (CDF) of X is

$$F_X(a) := \mathbb{P}(X \le a) = \sum_{x \le a} p_X(x).$$

Notice that $F_X(a)$ is non-decreasing and

$$\lim_{a\to -\infty} F_X(a) = 0$$

and

$$\lim_{a\to\infty}F_X(a)=1.$$

Examples

Let $T_1, T_2, ...$ be a sequence of independent fair coin tosses in $\{T, H\}$. Let X be the smallest *i* for which $T_i = H$. What is $p_X(k)$?

What is $F_X(k)$?

Random variables

Probability mass function and distribution function

Definition of expectation

Expectation of functions of a random variable

Definition of variance

Properties of variance

Decomposition into indicator variables

Recall: A random variable X is a function $X : S \to \mathbb{R}$. If it is discrete, it has probability mass function $p_X(a) = \mathbb{P}(X = a)$.

The **expectation** of X is

$$\mathbb{E}[X] := \sum_{x: p_X(x) > 0} p_X(x) \cdot x.$$

It is the probability-weighted average of values of X.

Examples

Suppose $\mathbb{P}(X = 1) = \frac{1}{2}$, $\mathbb{P}(X = 2) = \frac{1}{4}$, and $\mathbb{P}(X = 3) = \frac{1}{4}$. What is $\mathbb{E}[X]$?

Suppose $\mathbb{P}(X = 1) = p$ and $\mathbb{P}(X = 0) = 1 - p$. What is $\mathbb{E}[X]$?

Examples

What is the expected value of a roll of a 6-sided die?

What is the expected number of heads in 2 coin flips?

Random variables

Probability mass function and distribution function

Definition of expectation

Expectation of functions of a random variable

Definition of variance

Properties of variance

Decomposition into indicator variables

Functions of a random variable

If X is a random variable and f(x) is any function, we can create a new random variable f(X), which maps $s \in S$ to $f(X(s)) \in \mathbb{R}$.

For Y = f(X), we have

$$p_Y(y) = \mathbb{P}(f(X) = y) = \sum_{x:f(x)=y} \mathbb{P}(X = x) = \sum_{x:f(x)=y} p_X(x).$$

Suppose $\mathbb{P}(X = 0) = \frac{1}{2}$ and $\mathbb{P}(X = 1) = \frac{1}{2}$. • We have $X = X^2$. • For $Y = (X + 1)^2$, we have $\mathbb{P}(Y = 1) = \frac{1}{2}$ and $\mathbb{P}(Y = 4) = \frac{1}{2}$.

Expectations of functions

The expectation of Y = f(X) is

$$\mathbb{E}[f(X)] = \sum_{\substack{y:p_Y(y)>0\\y:p_Y(y)>0}} p_Y(y) \cdot y$$
$$= \sum_{\substack{y:p_Y(y)>0\\x:f(x)=y}} p_X(x) \cdot f(x)$$
$$= \sum_{\substack{x:p_X(x)>0}} p_X(x) \cdot f(x).$$

It is the probability-weighted average value of f(X).

For constants $a, b, \mathbb{E}[aX + b]$ is

$$\mathbb{E}[aX+b] = \sum_{\substack{x:p_X(x)>0}} p_X(x) \cdot (ax+b)$$
$$= a \sum_{\substack{x:p_X(x)>0}} p_X(x) \cdot x + b \sum_{\substack{x:p_X(x)>0}} p_X(x)$$
$$= a\mathbb{E}[X] + b.$$

Let X be the roll of a 6-sided die. What is $\mathbb{E}[X^2]$?

If X, Y are random variables, get new random variable X + Y with

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

Also works with *n* variables X_1, \ldots, X_n :

$$\mathbb{E}[a_1X_1 + \cdots + a_nX_n] = a_1\mathbb{E}[X_1] + \cdots + a_n\mathbb{E}[X_n].$$

This means that $\mathbb{E}[-]$ is a **linear** function on the space of random variables.

Examples

The linearity of expectation has an important application in the method of 'decomposing into sum of indicator functions' What is the expected number of heads in n coin flips?

Suppose we shuffle a deck of n cards. What is the expected number of cards which end up in the same position?

Suppose you put 6 pairs of socks into the laundry, but 3 socks are lost, leaving 9 total socks. What is the expected number of complete pairs? (Exercise)

Suppose X_1, \ldots, X_n are chosen independently with the same distribution as X. Law of large numbers:

$$\frac{X_1+\cdots+X_n}{n} \stackrel{n\to\infty}{\to} \mathbb{E}[X].$$

From 10⁶ fair coin flips, probably ≈half of the flips will be heads.
If this is not true, I should be suspicious the coin is not fair.
Later in the course, we will quantify this.

Decision making under uncertainty

Rational choice theory in economics says:

- Agents have a utility function u(x) depending on the state of the world x.
- Faced with possible random states of the world X., agents act (denoted as k) to maximize their expected utility:

$$\max_k \mathbb{E}[u(X_k)].$$

Examples:

- Netflix decides whether to invest in a new show.
- Trader decides which stock to buy.

Utility may not depend purely on monetary value.

You are offered the chance to play the following game. We flip a fair coin. If it is heads, you pay me \$10. If it is tails, I pay you \$11. Do you want to play?

The expected value of playing is

$$\frac{1}{2}(-\$10) + \frac{1}{2} \cdot \$11 = \$0.50.$$

What if you pay me 100 or I pay you 110? The expected value of playing is

$$\frac{1}{2}(-\$100) + \frac{1}{2} \cdot \$110 = \$5.$$

Gambler's ruin

Suppose gamblers Alice and Bob start with m and n dollars and take turns making fair \$1 bets.

What is the probability that Alice runs out of money first?

- ▶ Let X_m be the event that Alice runs out of money first starting with *m* dollars.
- Let *F* be the event that Alice wins the first flip.
- By law of total probability, we have

$$\mathbb{P}(X_m) = \mathbb{P}(X_m \mid F)\mathbb{P}(F) + \mathbb{P}(X_m \mid F^c)\mathbb{P}(F^c),$$

where $\mathbb{P}(X_m \mid F) = \mathbb{P}(X_{m+1})$ and $\mathbb{P}(X_m \mid F^c) = \mathbb{P}(X_{m-1})$.

• Setting $p_m = \mathbb{P}(X_m)$, this means that

$$p_m = \frac{1}{2}p_{m-1} + \frac{1}{2}p_{m+1}.$$

Gambler's ruin

Suppose gamblers Alice and Bob start with m and n dollars and take turns making fair \$1 bets. What is the probability that Alice runs out of money first?

- ▶ Let X_m be the event that Alice runs out of money first starting with *m* dollars.
- For $p_m = \mathbb{P}(X_m)$, we have

$$p_m = \frac{1}{2}p_{m-1} + \frac{1}{2}p_{m+1} \iff p_m - p_{m-1} = p_{m+1} - p_m.$$

- Notice that p₀ = 1 and p_{m+n} = 0, so p₀, p₁,..., p_{m+n} are evenly spaced along [0, 1].
- This implies $p_k = \frac{m+n-k}{m+n}$, hence $p_m = \frac{n}{m+n}$.

Suppose gamblers Alice and Bob start with m and ∞ **dollars** and take turns making fair \$1 bets.

What is the probability that Alice runs out of money first?

• If Bob starts with *n* dollars, answer is $\frac{n}{m+n}$. Now

$$\lim_{n\to\infty}\frac{n}{m+n}=1.$$

▶ If *n* is large, the house (Bob) always wins.

Random variables

Probability mass function and distribution function

Definition of expectation

Expectation of functions of a random variable

Definition of variance

Properties of variance

Decomposition into indicator variables

Suppose that X has expectation $\mathbb{E}[X]$. Its variance is

$$\operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2].$$

More explicitly, this is given by

$$\operatorname{Var}(X) = \sum_{x: p_X(x) > 0} p_X(x) \cdot (x - \mathbb{E}[X])^2.$$

It is the probability-weighted average deviation of X from $\mathbb{E}[X]$.

Suppose that X has expectation $\mathbb{E}[X]$. Its variance is

$$\operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2].$$

Why $(X - \mathbb{E}[X])^2$ instead of $|X - \mathbb{E}[X]|$ or $(X - \mathbb{E}[X])^4$?

Expanding the formula for variance using linearity of expectation:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2]$$
$$= \mathbb{E}[X^2] - 2\mathbb{E}[X] \cdot \mathbb{E}[X] + \mathbb{E}[X]^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Variance measures the expected difference between X^2 and $\mathbb{E}[X]^2$.

Examples

If X is the outcome of a die roll, what is Var(X)?

If X is the number of heads in 2 coin flip, what is Var(X)?

Examples

Let X be the amount won by a lottery ticket with probability $\frac{1}{1000}$ of winning 1000. What are $\mathbb{E}[X]$ and Var(X)?

Let X be the amount won by a lottery ticket with probability $\frac{1}{1,000,000}$ of winning 1,000,000. What are $\mathbb{E}[X]$ and Var(X)?

Which ticket you would like to buy?

Random variables

Probability mass function and distribution function

Definition of expectation

Expectation of functions of a random variable

Definition of variance

Properties of variance

Decomposition into indicator variables

$$Var(X) = 0$$
 if and only $\mathbb{P}(X = \mathbb{E}[X]) = 1$.

Affine transformations

If X is a random variable, what is Var(aX + b)?

Recall $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$. We compute $Var(aX + b) = \mathbb{E}[(aX + b)^2] - \mathbb{E}[aX + b]^2$

$$= \mathbb{E}[a^{2}X^{2} + 2abX + b^{2}] - (a\mathbb{E}[X] + b)^{2}$$

= $a^{2}\mathbb{E}[X^{2}] + 2ab\mathbb{E}[X] + b^{2} - a^{2}\mathbb{E}[X]^{2} - 2ab\mathbb{E}[X] - b^{2}$
= $a^{2}(\mathbb{E}[X^{2}] - \mathbb{E}[X]^{2})$
= $a^{2} \operatorname{Var}(X)$.

Notice that Var(X) scales as the square of X.

The **standard deviation** of X is

$$\mathsf{SD}[X] := \sqrt{\mathsf{Var}(X)}$$

This means that

$$SD[aX + b] = \sqrt{a^2 \operatorname{Var}(X)} = aSD[X],$$

which means that SD[X] is at the same scale as X.

Random variables

Probability mass function and distribution function

Definition of expectation

Expectation of functions of a random variable

Definition of variance

Properties of variance

Decomposition into indicator variables

Card example

Choose 5 cards from a standard deck of cards. Let X be the number of aces. What is $\mathbb{E}[X]$ and Var(X)?

Notice that

$$\mathbb{P}(X=k) = \frac{\#\{\text{hands with } k \text{ aces}\}}{\#\{\text{hands}\}} = \frac{\binom{4}{k}\binom{48}{5-k}}{\binom{52}{5}}.$$

So in theory we can compute

$$\mathbb{E}[X] = \sum_{k=0}^{4} \mathbb{P}(X = k) \cdot k$$
$$Var(X) = \sum_{k=0}^{4} \mathbb{P}(X = k) \cdot k^{2} - \mathbb{E}[X]^{2}.$$

Choose 5 cards from a standard deck of cards. Let X be the number of aces. What is $\mathbb{E}[X]$ and Var(X)?

Define the indicator variables

$$X_i = \mathbf{1}_{\mathsf{card}\ i}$$
 is an ace

so that

$$X = X_1 + X_2 + X_3 + X_4 + X_5.$$

Deck shuffles

Let X be the number of cards which stay in the same position when a deck of n cards is shuffled. What is Var(X)?

Deck shuffles

Let X be the number of cards which stay in the same position when a deck of n cards is shuffled. What is Var(X)?

For $i = 1, \ldots, n$, let $X_i = \mathbf{1}_{\mathsf{card}\ i}$ stays in the same position so that

$$X=\sum_{i=1}^n X_i.$$

Notice that $\mathbb{E}[X_i^2] = \mathbb{E}[X_i] = \frac{1}{n}$ and for $i \neq j$ that $\mathbb{E}[X_iX_j] = \frac{1}{n} \cdot \frac{1}{n-1}$. This means

$$\mathbb{E}[X^2] = \sum_{i=1}^n \mathbb{E}[X_i^2] + 2\sum_{i< j} \mathbb{E}[X_i X_j] = n \cdot \frac{1}{n} + 2 \cdot \frac{n(n-1)}{2} \cdot \frac{1}{n(n-1)} = 2$$

so $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 2 - 1 = 1.$