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Where are we?

Sums of independent r.v.

Conditional distribution



Sum of two independent r.v.

As we discussed in previous lecture, given X , Y independent,
continous r.v. with density function fX , fY , the density function of
X + Y can be written as,

fX+Y (a) =

∫ ∞
−∞

fX (a− y)fY (y)dy =

∫ ∞
−∞

fX (x)fY (a− x)dx



Sums of uniform distributions

If X1, X2 are independent identical uniform distributed on (0, 1),
what is the distribution of X1 + X2?



Continued..

If X1, X2, · · · , are independent identical uniform distributed on
(0, 1). What is the expectation of N where

N = min{n : X1 + X2 + · · ·+ Xn > 1}

Let Fn denote cummulative distribution function of X1 + · · ·+ Xn.
By Mathematical Induction, we first try to prove
Fn(x) = xn/n!, 0 ≤ x ≤ 1.

So P{N > n} = Fn(1)
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Continued..
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Sums of Normal distribution

Recall density function of a normal distribution with parameters
(µ, σ2) is given by

f (x) =
1√
2πσ

exp(−(x − µ)2

2σ2
)

Proposition: If X1, X2, · · · , Xn are independent random random
variables with respective parameters (µ1, σ

2
1), (µ2, σ

2
2), · · · ,

(µ1, σ
2
1), then X1 + X2 + · · ·+ Xn is a normal random variable with

parameters (µ1 + µ2 + · · ·+ µn, σ
2
1 + σ2

2 + · · ·+ σ2
n).

The proof is left as part of the homework.
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Sums of Gamma distribution

Recall density function of a gamma distribution with parameters
(α, λ) is given by

f (x) =

{
λe−λx (λx)α−1

Γ(α) x ≥ 0

0 x < 0

Proposition: If X and Y are independent gamma random variables
with respective parameters (s, λ) and (t, λ), then X + Y is a
gamma random variable with parameters (s + t, λ).
The proof is also left as part of the homework.
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Definition: Discrete Case

Recall that, for any two events E and F , the conditional
probability of E given F is defined, provided that P(F ) > 0, by

P(E |F ) =
P(EF )

P(F )

Hence, if X and Y are discrete random variables, it is natural to
define the conditional probability mass function of X given that
Y = y , by

PX |Y (x |y) = P{X = x |Y = y}

=
P{X = x ,Y = y}

P{Y = y}

=
p(x , y)

pY (y)

for all values of y such that pY (y) > 0.
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Definition: Continuous Case

If X and Y have a joint probability density function f (x , y), then
the conditional probability density function of X given that Y = y
is defined, for all values of y such that fY (y) > 0, by

fX |Y (x |y) =
f (x , y)

fY (y)

Recall if X , Y are independent, then f (x , y) =
Now what is PX |Y (x |y)?
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Example: Computation

Suppose that the joint density of X and Y is given by

f (x , y) =

{
e−x/y e−y

y 0 < x < q, 0 < y < q

0 otherwise

Find P{X > 1|Y = y}.



Example: Bivariate Normal Distribution

One of the most important joint distributions is the bivariate
normal distribution. We say that the random variables X , Y have
a bivariate normal distribution if, for constants µx , µy , σx > 0,
σy > 0, −1 < ρ < 1, their joint density function is given by,

f (x , y) =
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

·
(
(
x − µx
σx

)2 + (
y − µy
σy

)2 − 2ρ
(x − µx)(y − µy )

σxσy

))

Proposition:

1. Given Y = y , the random variable X is nromally distributed with
mean µx + ρσx

σy
(y − µy ) and variance σ2

x(1− ρ2)

2. The marginal distribution of X is normal with mean µx and
variance σ2

x .
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