Lecture 15: Weak Taylor Approximation

Zhongjian Wang*

Abstract

Introducing weak schemes based on Ito-Taylor expansion and the convergence theorem.

1 Weak Euler Scheme

$$Y_{n+1} = Y_n + a(Y_n)\Delta + b(Y_n)\Delta W_n, \qquad (1.1)$$

with initial data $Y_0 = X_0$.

Weak Approximation is for approximating the measure (or moments) related to the Ito SDE solution X(t). One could replace ΔW_n by a simple two-point distributed r.v $\Delta \tilde{W}_n$ with:

$$Prob(\Delta \tilde{W}_n = \pm \sqrt{\Delta}) = \frac{1}{2}.$$

To study weak convergence of approximation, introduce space $H^{(l)}$ for functions of x, $l \in (0,1) \cup (1,2) \cup (2,3)$. $H^{(l)}$ consists of u(x) such that $\partial_x^s u$ is Hölder continuous with exponent l - [l], [l] integral part of l, s an integer $\leq l$. Hölder norm of a function v(x) is:

$$\|v\| = \sup_{x \neq x'} \frac{|v(x) - v(x')|}{|x - x'|^{l - [l]}}$$

The $H^{(l)}$ norm is:

$$||u||_l = ||\partial_x^{[l]}u|| + \sum_{s \le l} \sup |u^{(s)}(x)|.$$

The convergence of Euler weak approximation is:

Theorem 1.1 Let X(t) be Ito SDE solution over [0,T], a(x), $b(x) \in H^{(l)}$, and let $Y^{\delta}(t)$ be Euler approximation with time step δ . For any function $g \in H^{(l+2)}$:

$$|E(g(X(T))) - E(g(Y^{\delta}(T)))| \le K\delta^{\chi(l)},$$

^{*}Department of Statistics, University of Chicago

$$\chi(l) = \begin{cases} l/2, \text{ if } l \in (0,1), \\ 1/(3-l), \text{ if } l \in (1,2), \\ 1, \text{ if } l \in (2,3), \end{cases}$$
(1.2)

and K independent of l.

Remark 1.1 If the coefficients a and b are slightly more differentiable than twice, the weak convergence is first order. When l = 1, namely, coefficients are Lipschitz, weak convergence is order 0.5.

1.1 Convergence of Weak Euler

Let f = f(t, x) be a Hölder continuous function of exponent l in $x \in \mathbb{R}^1$, l/2 in $t \in [0, T]$, such functions form the Hölder space $H_T^{(l)}$. Let $Y^{\delta}(t)$ be the Euler approximate solution of Ito SDE solution X(t) starting from same initial data $X_0 = Y_0$. The noise increment $\Delta \tilde{W}$ satisfies:

$$E(|\Delta \tilde{W}|^3) + |E(\Delta \tilde{W})^2 - \Delta| \le K\Delta^2.$$
(1.3)

Lemma 1.1 Suppose drift and diffusion a and b are bounded, then for any $\eta \in (0,1)$, there is a positive constant K_{η} such that:

$$|E(f(s, Y^{\delta}(s)) - f(\tau_{n_s}, Y^{\delta}_{n_s})|A_{\tau_{n_s}})| \le K_{\eta} ||f||_T^{(l)} \delta^{\chi(l)},$$
(1.4)

 $s \in [0,T], \ l \in [\eta,1) \cup (1,2) \cup (2,3), \ \chi \ is \ defined \ in \ (1.2).$

Proof: let $w_{\epsilon}(x) = \frac{1}{\epsilon}w(\frac{x}{\epsilon})$, the mollifier, define:

$$f^{h,\epsilon} = h^{-1} \int_t^{t+h} \int f(\min(u,T), y) w_{\epsilon}(x-y) dy du_{\epsilon}(x-y) dy du_{\epsilon}(x$$

then:

$$\sup_{t,x} |f(t,x) - f^{h,\epsilon}(t,x)| \leq ||f||_T^{(l)}(h^{\min(l/2,1)} + \epsilon^{\min(l,1)}),$$
(1.5)

$$\sup_{t,x} |\partial_x^i f^{h,\epsilon}(t,x)| \leq K ||f||_T^{(l)} \epsilon^{\min(l-i,0)},$$
(1.6)

$$\sup_{t,x} |\partial_t f^{h,\epsilon}(t,x)| \leq K ||f||_T^{(l)} h^{\min(-1+l/2,0)},$$
(1.7)

i = 1, 2, min with 1 in (1.5) is due to first differencing of left had side; integer derivatives in (1.6)-(1.7) reduce exponent by 1.

We replace f by $f^{h,\epsilon}$ and estimate errors.

$$|E(f(s, Y^{\delta}(s)) - f(\tau_{n_s}, Y^{\delta}_{n_s})|A_{\tau_{n_s}})|$$

$$\leq 2 \sup_{t,x} |f(t, x) - f^{h,\epsilon}(t, x)|$$

$$+|E(f^{h,\epsilon}(s, Y^{\delta}(s)) - f^{h,\epsilon}(\tau_{n_s}, Y^{\delta}_{n_s})|A_{\tau_{n_s}})|$$

$$(1.8)$$

The second term of (1.8) is estimated by an approximate Ito formula thanks to (1.3) and (1.5)-(1.7), skipping superscript δ on Y^{δ} :

$$\leq |E(\int_{\tau_{n_s}}^{s} du \,\partial_t f^{h,\epsilon}(u, Y(u)) + \frac{1}{2} b(\tau_{n_s}, Y_{n_s}) f_{xx}^{h,\epsilon}(u, Y(u)) + a(\tau_{n_s}, Y_{n_s}) f_x^{h,\epsilon}(u, Y(u)) |A_{\tau_{n_s}})| + K_1 \delta^2 \leq K \|f\|_T^{(l)} (h^{\min(-1+l/2,0)} + \epsilon^{\min(l-2,0)}) \delta.$$
(1.9)

So:

$$\begin{aligned} &|E(f(s, Y^{\delta}(s)) - f(\tau_{n_{s}}, Y^{\delta}_{n_{s}})|A_{\tau_{n_{s}}})| \\ &\leq K ||f||_{T}^{(l)} [\inf_{h \in (0,1)} (h^{\min(l/2,1)} + h^{\min(-1+l/2,0)}\delta) \\ &+ \inf_{\epsilon \in (0,1)} (\epsilon^{\min(l,1)} + \epsilon^{\min(l-2,0)}\delta)], \\ &\leq K_{\eta} ||f||_{T}^{(l)} \delta^{\chi(l)}, \end{aligned}$$
(1.10)

proof is finished.

Proof of Theorem 1.1 Let:

$$L_0 = \partial_t + a(x)\partial_x + \frac{1}{2}b(x)\partial_{xx},$$

there is unique solution of final value problem:

$$L_0 v = 0, \quad v(T, x) = g(x),$$
 (1.11)

such that:

$$\|v\|_T^{(l+2)} \le K \|g\|^{(l+2)}, \tag{1.12}$$

and by Ito:

$$E(v(0, X_0)) = E(v(T, X_T)) = E(g(X_T)).$$

It follows by Ito formula and triangle inequality:

$$\begin{split} &|E(g(X_T)) - E(g(Y(T)))| \\ &= |E(v(0,X_0)) - E(v(T,Y(T)))| = |E(v(T,Y(T))) - E(v(0,Y_0))| \\ &= |E(\int_0^T [\frac{1}{2}b(Y_{n_s})v_{xx} + a(Y_{n_s})v_x + v_t - L_0v](s,Y(s))ds)| + O(\delta) \\ &\leq \int_0^T |E([b(Y_{n_s}) - b(Y(s))]v_{xx}(s,Y(s)))|ds \\ &+ \int_0^T |E([a(Y_{n_s}) - a(Y(s))]v_x(s,Y(s)))|ds + O(\delta) \\ &\leq \int_0^T |E(b(Y_{n_s})v_{xx}(\tau_{n_s},Y_{n_s}) - b(Y(s))v_{xx}(s,Y(s))|A_{\tau_{n_s}})| + O(\delta) \\ &+ |E(b(Y_{n_s})[v_{xx}(\tau_{n_s},Y_{n_s}) - v_{xx}(s,Y(s))]|A_{\tau_{n_s}})| ds \\ &+ \dots \end{split}$$

.... refer to similar terms on drift. Note that bv_{xx} , v_{xx} , av_x , v_x all belong to $H_T^{(l)}$ due to (1.12). Applying the lemma, we prove the weak convergence theorem of the Euler method.

2 Higher Order Weak Schemes

2.1 Order 2 Weak Schemes

Adding all of the double stochastic integrals from Ito-Taylor expansions gives the order 2 weak scheme:

$$Y_{n+1} = Y_n + a\Delta + b\Delta W + \frac{1}{2}bb'((\Delta W)^2 - \Delta) + a'b\Delta Z + \frac{1}{2}(aa' + \frac{1}{2}a''b^2)\Delta^2 + (ab' + \frac{1}{2}b''b^2)(\Delta W\Delta - \Delta Z)$$
(2.13)

 $\Delta Z = \int_0^{\Delta} W_s \, ds$. Here ΔW and ΔZ are generated jointly by mapping independent unit Gaussians U_i , i = 1, 2.

$$\Delta W = U_1 \sqrt{\Delta}, \ \Delta Z = \frac{1}{2} \Delta^{3/2} (U_1 + \frac{1}{\sqrt{3}} U_2).$$

Simplified weak schemes are constructed by replacing ΔW by a similarly distributed

 $\Delta \hat{W}$, and ΔZ by $\frac{1}{2}\Delta \hat{W}\Delta$ to approximate $E(\Delta Z\Delta W) = \Delta^2/2$:

$$Y_{n+1} = Y_n + a\Delta + b\Delta\hat{W} + \frac{1}{2}bb'((\Delta\hat{W})^2 - \Delta) + \frac{1}{2}(a'b + ab' + \frac{1}{2}b''b^2)\Delta\hat{W}\Delta + \frac{1}{2}(aa' + \frac{1}{2}a''b^2)\Delta^2,$$
(2.14)

where $\Delta \hat{W}$ satisfies the moment condition:

$$E(|\Delta \hat{W}|^{5}) + |E((\Delta \hat{W})^{2}) - \Delta| + |E((\Delta \hat{W})^{4}) - 3\Delta^{2}| \le K\Delta^{3},$$
(2.15)

One may choose \hat{W} as $N(0, \Delta)$, or 3-point random variable taking $\pm \sqrt{3\Delta}$ with prob 1/6 each, and zero with prob 2/3.

General Multi-dimensional case In the general multi-dimensional case d, m = 1, 2, ... the k th component of the order 2.0 weak Taylor scheme takes the form

$$Y_{n+1}^{k} = Y_{n}^{k} + a^{k}\Delta + \frac{1}{2}L^{0}a^{k}\Delta^{2} + \sum_{j=1}^{m} \left\{ b^{k,j}\Delta W^{j} + L^{0}b^{k,j}I_{(0,j)} + L^{j}a^{k}I_{(j,0)} \right\} + \sum_{j_{1},j_{2}=1}^{m} L^{j_{1}}b^{k,j_{2}}I_{(j_{1},j_{2})}$$
(2.16)

For weak convergence we can substitute simpler random variables the multiple Ito integrals. In this way we obtain from (2.16) the following simplified order 2.0 weak Taylor scheme with k th component

$$Y_{n+1}^{k} = Y_{n}^{k} + a^{k}\Delta + \frac{1}{2}L^{0}a^{k}\Delta^{2} + \sum_{j=1}^{m} \left\{ b^{k,j} + \frac{1}{2}\Delta \left(L^{0}b^{k,j} + L^{j}a^{k} \right) \right\} \Delta \hat{W}^{j} + \frac{1}{2}\sum_{j_{1},j_{2}=1}^{m} L^{j_{1}}b^{k,j_{2}} \left(\Delta \hat{W}^{j_{1}}\Delta \hat{W}^{j_{2}} + V_{j_{1},j_{2}} \right)$$

Here the $\Delta \hat{W}^{j}$ for j = 1, 2, ..., m are independent random variables satisfying (2.15) and the $V_{j_{1},j_{2}}$ are independent two-point distributed random variables with

$$P\left(V_{j_1,j_2}=\pm\Delta\right)=\frac{1}{2}$$

for $j_2 = 1, \ldots, j_1 - 1$,

$$V_{j_1,j_1} = -\Delta$$

and

$$V_{j_1,j_2} = -V_{j_2,j_1}$$

2.2 Order 3 Schemes

Consider d = m = 1,

$$Y_{n+1} = Y_n + a\Delta + b\Delta W + L^0 a I_{(0,0)} + L^1 a I_{(1,0)} + L^0 b I_{(0,1)} + L^1 b I_{(1,1)} + L^0 L^0 a I_{(0,0,0)} + L^0 L^1 a I_{(0,1,0)} + L^1 L^0 a I_{(1,0,0)} + L^1 L^1 a I_{(1,1,0)} + L^0 L^0 b I_{(0,0,1)} + L^0 L^1 b I_{(0,1,1)} + L^1 L^0 b I_{(1,0,1)} + L^1 L^1 b I_{(1,1,1)}$$

By comparing moments, we propose,

$$\begin{split} Y_{n+1} &= Y_n + a\Delta + b\Delta \tilde{W} + \frac{1}{2}L^1 b \left\{ (\Delta \tilde{W})^2 - \Delta \right\} \\ &+ L^1 a \Delta \tilde{Z} + \frac{1}{2}L^0 a \Delta^2 + L^0 b \{ \Delta \tilde{W} \Delta - \Delta \tilde{Z} \} \\ &+ \frac{1}{6} \left(L^0 L^0 b + L^0 L^1 a + L^1 L^0 a \right) \Delta \tilde{W} \Delta^2 \\ &+ \frac{1}{6} \left(L^1 L^1 a + L^1 L^0 b + L^0 L^1 b \right) \left\{ (\Delta \tilde{W})^2 - \Delta \right\} \Delta \tilde{W} \\ &+ \frac{1}{6} L^0 L^0 a \Delta^3 + \frac{1}{6} L^1 L^1 b \left\{ (\Delta \tilde{W})^2 - 3\Delta \right\} \Delta \tilde{W} \end{split}$$

where $\Delta \tilde{W}$ and $\Delta \tilde{Z}$ are correlated Gaussian random variables with

$$\Delta \tilde{W} \sim N(0; \Delta), \quad \Delta \tilde{Z} \sim N\left(0; \frac{1}{3}\Delta^3\right)$$

and covariance

$$E(\Delta \tilde{W} \Delta \tilde{Z}) = \frac{1}{2} \Delta^2.$$

3 General Rule and Convergence

In general, a weak order $\beta = 1, 2, 3, \cdots$ scheme needs all of the multiple Ito integrals from the Ito-Taylor expansion in the set $\Gamma_{\beta} = \{\alpha : l(\alpha) \leq \beta\}$. Here *l* is the length of the index α . Note that is different from the strong scheme index set A_{γ} which also depends on the number of zeros in the index $n(\alpha)$. **Theorem 3.1** Let Y^{δ} be a time discrete approximation of an autonomous Ito process X corresponding to a time discretization $(\tau)_{\delta}$, such that all moments of the initial value X_0 exist, that is

$$E\left(\left|X_{0}\right|^{i}\right) < \infty$$

for i = 1, 2, ..., and such that Y_0^{δ} converges weakly with order β to X_0 as $\delta \to 0$ for some fixed $\beta = 1.0, 2.0, ...$ Assume that a(x), b(x) are $C^{2(\beta+1)}$ and all derivatives up to $2(\beta+1)$ have polynomial growth in large x. In addition, suppose that for each p = 1, 2, ... there exist constants $K < \infty$ and $r \in \{1, 2, ...\}$, which do not depend on δ , such that for each $q \in \{1, ..., p\}$

$$E\left(\max_{0\leq n\leq n_{T}}\left|Y_{n}^{\delta}\right|^{2q}\mid\mathcal{A}_{0}\right)\leq K\left(1+\left|Y_{0}^{\delta}\right|^{2r}\right)$$

and $E\left(\left|Y_{n+1}^{\delta} - Y_{n}^{\delta}\right|^{2q} \mid \mathcal{A}_{\tau_{n}}\right) \leq K\left(1 + \max_{0 \leq k \leq n} \left|Y_{k}^{\delta}\right|^{2r}\right)(\tau_{n+1} - \tau_{n})^{q}$ for $n = 0, 1, \dots, n_{T} - 1$, and such that

$$\left| E\left(\prod_{h=1}^{l} \left(Y_{n+1}^{\delta, p_{h}} - Y_{n}^{\delta, p_{h}}\right) - \prod_{h=1}^{l} \left(\sum_{\alpha \in \Gamma_{\beta} \setminus \{v\}} f_{\alpha}^{p_{h}} \left(\tau_{n}, Y_{n}^{\delta}\right) I_{\alpha, \tau_{n}, \tau_{n+1}}\right) \mid \mathcal{A}_{\tau_{n}}\right) \right| \leq K\left(1 + \max_{0 \leq k \leq n_{T}} \left|Y_{k}^{\delta}\right|^{2r}\right) \delta^{\beta} \left(\tau_{n+1} - \tau_{n}\right)$$
(3.17)

for all $n = 0, 1, ..., n_T - 1$ and $(p_1, ..., p_l) \in \{1, ..., d\}^l$, where $l = 1, ..., 2\beta + 1$ and Y^{δ, p_h} denotes the p_h th component of Y^{δ} . Then the time discrete approximation Y^{δ} converges weakly with order β as $\delta \to 0$ to the Ito process X at time T.

A straight forward corollary follows,

Corollary 3.1 Let X(t) be an autonomous Ito SDE solution over [0, T]. Let Y^{δ} be solution of a weak scheme of order $\beta = 1, 2, 3, \cdots$, with exact Brownian increment. Then for any function $g \in C^{2(\beta+1)}$ whose derivatives up to $2(\beta+1)$ have polynomial growth in large x,

$$|E(g(X(T))) - E(g(Y^{\delta}(T)))| \le K_g \delta^{\beta},$$

 K_q independent of δ .

Note, left hand side of (3.17) is zero with exact Brownian increment.