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Abstract

Introducing weak schemes based on Ito-Taylor expansion and the convergence
theorem.

1 Weak Euler Scheme

Yn+1 = Yn + a(Yn)∆ + b(Yn)∆Wn, (1.1)

with initial data Y0 = X0.
Weak Approximation is for approximating the measure (or moments) related to the Ito

SDE solution X(t). One could replace ∆Wn by a simple two-point distributed r.v ∆W̃n

with:

Prob(∆W̃n = ±
√

∆) =
1

2
.

To study weak convergence of approximation, introduce space H(l) for functions of x,
l ∈ (0, 1) ∪ (1, 2) ∪ (2, 3). H(l) consists of u(x) such that ∂sxu is Hölder continous with
exponent l − [l], [l] integral part of l, s an integer ≤ l. Hölder norm of a function v(x) is:

‖v‖ = sup
x 6=x′

|v(x)− v(x′)|
|x− x′|l−[l]

.

The H(l) norm is:
‖u‖l = ‖∂[l]

x u‖+
∑
s≤l

sup |u(s)(x)|.

The convergence of Euler weak approximation is:

Theorem 1.1 Let X(t) be Ito SDE solution over [0, T ], a(x), b(x) ∈ H(l), and let Y δ(t)
be Euler approximation with time step δ. For any function g ∈ H(l+2):

|E(g(X(T )))− E(g(Y δ(T )))| ≤ Kδχ(l),
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χ(l) =


l/2, if l ∈ (0, 1),

1/(3− l), if l ∈ (1, 2),

1, if l ∈ (2, 3),

(1.2)

and K independent of l.

Remark 1.1 If the coefficients a and b are slightly more differentiable than twice, the weak
convergence is first order. When l = 1, namely, coefficients are Lipschitz, weak convergence
is order 0.5.

1.1 Convergence of Weak Euler

Let f = f(t, x) be a Hölder continuous function of exponent l in x ∈ R1, l/2 in t ∈ [0, T ],

such functions form the Hölder space H
(l)
T . Let Y δ(t) be the Euler approximate solution of

Ito SDE solution X(t) starting from same initial data X0 = Y0. The noise increment ∆W̃
satisfies:

E(|∆W̃ |3) + |E(∆W̃ )2 −∆| ≤ K∆2. (1.3)

Lemma 1.1 Suppose drift and diffusion a and b are bounded, then for any η ∈ (0, 1), there
is a positive constant Kη such that:

|E(f(s, Y δ(s))− f(τns , Y
δ
ns)|Aτns )| ≤ Kη‖f‖(l)

T δ
χ(l), (1.4)

s ∈ [0, T ], l ∈ [η, 1) ∪ (1, 2) ∪ (2, 3), χ is defined in (1.2).

Proof: let wε(x) = 1
ε
w(x

ε
), the mollifier, define:

fh,ε = h−1

∫ t+h

t

∫
f(min(u, T ), y)wε(x− y)dydu,

then:

sup
t,x
|f(t, x)− fh,ε(t, x)| ≤ ‖f‖(l)

T (hmin(l/2,1) + εmin(l,1)), (1.5)

sup
t,x
|∂ixfh,ε(t, x)| ≤ K‖f‖(l)

T ε
min(l−i,0), (1.6)

sup
t,x
|∂tfh,ε(t, x)| ≤ K‖f‖(l)

T h
min(−1+l/2,0), (1.7)

i = 1, 2, min with 1 in (1.5) is due to first differencing of left had side; integer derivatives
in (1.6)-(1.7) reduce exponent by 1.
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We replace f by fh,ε and estimate errors.

|E(f(s, Y δ(s))− f(τns , Y
δ
ns)|Aτns )|

≤ 2 sup
t,x
|f(t, x)− fh,ε(t, x)|

+|E(fh,ε(s, Y δ(s))− fh,ε(τns , Y δ
ns)|Aτns )| (1.8)

The second term of (1.8) is estimated by an approximate Ito formula thanks to (1.3)
and (1.5)-(1.7), skipping superscript δ on Y δ:

≤ |E(

∫ s

τns

du ∂tf
h,ε(u, Y (u)) +

1

2
b(τns , Yns)f

h,ε
xx (u, Y (u))

+a(τns , Yns)f
h,ε
x (u, Y (u))|Aτns )|+K1δ

2

≤ K‖f‖(l)
T (hmin(−1+l/2,0) + εmin(l−2,0))δ. (1.9)

So:

|E(f(s, Y δ(s))− f(τns , Y
δ
ns)|Aτns )|

≤ K‖f‖(l)
T [ inf

h∈(0,1)
(hmin(l/2,1) + hmin(−1+l/2,0)δ)

+ inf
ε∈(0,1)

(εmin(l,1) + εmin(l−2,0)δ)],

≤ Kη‖f‖(l)
T δ

χ(l),

(1.10)

proof is finished.

Proof of Theorem 1.1 Let:

L0 = ∂t + a(x)∂x +
1

2
b(x)∂xx,

there is unique solution of final value problem:

L0v = 0, v(T, x) = g(x), (1.11)

such that:
‖v‖(l+2)

T ≤ K‖g‖(l+2), (1.12)

and by Ito:

E(v(0, X0)) = E(v(T,XT )) = E(g(XT )).
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It follows by Ito formula and triangle inequality:

|E(g(XT ))− E(g(Y (T )))|
= |E(v(0, X0))− E(v(T, Y (T )))| = |E(v(T, Y (T )))− E(v(0, Y0))|

= |E(

∫ T

0

[
1

2
b(Yns)vxx + a(Yns)vx + vt − L0v](s, Y (s))ds)|+O(δ)

≤
∫ T

0

|E([b(Yns)− b(Y (s))]vxx(s, Y (s)))|ds

+

∫ T

0

|E([a(Yns)− a(Y (s))]vx(s, Y (s)))|ds+O(δ)

≤
∫ T

0

|E(b(Yns)vxx(τns , Yns)− b(Y (s))vxx(s, Y (s))|Aτns )|+O(δ)

+|E(b(Yns)[vxx(τns , Yns)− vxx(s, Y (s))]|Aτns )| ds
+ ......

.... refer to similar terms on drift. Note that bvxx, vxx, avx, vx all belong to H
(l)
T due to

(1.12). Applying the lemma, we prove the weak convergence theorem of the Euler method.

2 Higher Order Weak Schemes

2.1 Order 2 Weak Schemes

Adding all of the double stochastic integrals from Ito-Taylor expansions gives the order 2
weak scheme:

Yn+1 = Yn + a∆ + b∆W +
1

2
bb′((∆W )2 −∆)

+a′b∆Z +
1

2
(aa′ +

1

2
a′′b2)∆2

+(ab′ +
1

2
b′′b2)(∆W∆−∆Z) (2.13)

∆Z =
∫ ∆

0
Ws ds. Here ∆W and ∆Z are generated jointly by mapping independent unit

Gaussians Ui, i = 1, 2.

∆W = U1

√
∆, ∆Z =

1

2
∆3/2(U1 +

1√
3
U2).

Simplified weak schemes are constructed by replacing ∆W by a similarly distributed
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∆Ŵ , and ∆Z by 1
2
∆Ŵ∆ to approximate E(∆Z∆W ) = ∆2/2:

Yn+1 = Yn + a∆ + b∆Ŵ +
1

2
bb′((∆Ŵ )2 −∆)

+
1

2
(a′b+ ab′ +

1

2
b′′b2)∆Ŵ∆

+
1

2
(aa′ +

1

2
a′′b2)∆2, (2.14)

where ∆Ŵ satisfies the moment condition:

E(|∆Ŵ |5) + |E((∆Ŵ )2)−∆|+ |E((∆Ŵ )4)− 3∆2| ≤ K∆3, (2.15)

One may choose Ŵ as N(0,∆), or 3-point random variable taking ±
√

3∆ with prob
1/6 each, and zero with prob 2/3.

General Multi-dimensional case In the general multi-dimensional case d,m = 1, 2, . . .
the k th component of the order 2.0 weak Taylor scheme takes the form

Y k
n+1 =Y k

n + ak∆ +
1

2
L0ak∆2

+
m∑
j=1

{
bk,j∆W j + L0bk,jI(0,j) + LjakI(j,0)

}
+

m∑
j1,j2=1

Lj1bk,j2I(j1,j2) (2.16)

For weak convergence we can substitute simpler random variables the multiple Ito integrals.
In this way we obtain from (2.16) the following simplified order 2.0 weak Taylor scheme
with k th component

Y k
n+1 =Y k

n + ak∆ +
1

2
L0ak∆2

+
m∑
j=1

{
bk,j +

1

2
∆
(
L0bk,j + Ljak

)}
∆Ŵ j

+
1

2

m∑
j1,j2=1

Lj1bk,j2
(

∆Ŵ j1∆Ŵ j2 + Vj1,j2

)
Here the ∆Ŵ j for j = 1, 2, . . . ,m are independent random variables satisfying (2.15) and

the Vj1,j2 are independent two-point distributed random variables with

P (Vj1,j2 = ±∆) =
1

2
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for j2 = 1, . . . , j1 − 1,

Vj1,j1 = −∆

and

Vj1,j2 = −Vj2,j1

2.2 Order 3 Schemes

Consider d = m = 1,

Yn+1 = Yn + a∆ + b∆W + L0aI(0,0) + L1aI(1,0) + L0bI(0,1) + L1bI(1,1)

+ L0L0aI(0,0,0) + L0L1aI(0,1,0) + L1L0aI(1,0,0) + L1L1aI(1,1,0)

+ L0L0bI(0,0,1) + L0L1bI(0,1,1) + L1L0bI(1,0,1) + L1L1bI(1,1,1)

By comparing moments, we propose,

Yn+1 = Yn+a∆ + b∆W̃ +
1

2
L1b

{
(∆W̃ )2 −∆

}
+ L1a∆Z̃ +

1

2
L0a∆2 + L0b{∆W̃∆−∆Z̃}

+
1

6

(
L0L0b+ L0L1a+ L1L0a

)
∆W̃∆2

+
1

6

(
L1L1a+ L1L0b+ L0L1b

){
(∆W̃ )2 −∆

}
∆

+
1

6
L0L0a∆3 +

1

6
L1L1b

{
(∆W̃ )2 − 3∆

}
∆W̃

where ∆W̃ and ∆Z̃ are correlated Gaussian random variables with

∆W̃ ∼ N(0; ∆), ∆Z̃ ∼ N

(
0;

1

3
∆3

)
and covariance

E(∆W̃∆Z̃) =
1

2
∆2.

3 General Rule and Convergence

In general, a weak order β = 1, 2, 3, · · · scheme needs all of the multiple Ito integrals from
the Ito-Taylor expansion in the set Γβ = {α : l(α) ≤ β}. Here l is the length of the index
α. Note that is different from the strong scheme index set Aγ which also depends on the
number of zeros in the index n(α).
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Theorem 3.1 Let Y δ be a time discrete approximation of an autonomous Ito process X
corresponding to a time discretization (τ)δ, such that all moments of the initial value X0

exist, that is

E
(
|X0|i

)
<∞

for i = 1, 2, . . ., and such that Y δ
0 converges weakly with order β to X0 as δ → 0 for some

fixed β = 1.0, 2.0, . . .. Assume that a(x), b(x) are C2(β+1) and all derivatives up to 2(β+ 1)
have polynomial growth in large x. In addition, suppose that for each p = 1, 2, . . . there
exist constants K < ∞ and r ∈ {1, 2, . . .}, which do not depend on δ, such that for each
q ∈ {1, . . . , p}

E

(
max

0≤n≤nT

∣∣Y δ
n

∣∣2q | A0

)
≤ K

(
1 +

∣∣Y δ
0

∣∣2r)
and E

(∣∣Y δ
n+1 − Y δ

n

∣∣2q | Aτn) ≤ K
(

1 + max0≤k≤n
∣∣Y δ
k

∣∣2r) (τn+1 − τn)q for n = 0, 1, . . . , nT−
1, and such that∣∣∣∣∣∣E

 l∏
h=1

(
Y δ,ph
n+1 − Y δ,ph

n

)
−

l∏
h=1

 ∑
α∈Γβ\{v}

fphα
(
τn, Y

δ
n

)
Iα,τn,τn+1

 | Aτn
∣∣∣∣∣∣

≤ K

(
1 + max

0≤k≤nT

∣∣Y δ
k

∣∣2r) δβ (τn+1 − τn) (3.17)

for all n = 0, 1, . . . , nT − 1 and (p1, . . . , pl) ∈ {1, . . . , d}l, where l = 1, . . . 2β + 1 and Y δ,ph

denotes the ph th component of Y δ. Then the time discrete approximation Y δ converges
weakly with order β as δ → 0 to the Ito process X at time T .

A straight forward corollary follows,

Corollary 3.1 Let X(t) be an autonomous Ito SDE solution over [0, T ]. Let Y δ be solution
of a weak scheme of order β = 1, 2, 3, · · · , with exact Brownian increment. Then for any
function g ∈ C2(β+1) whose derivatives up to 2(β + 1) have polynomial growth in large x,

|E(g(X(T )))− E(g(Y δ(T )))| ≤ Kgδ
β,

Kg independent of δ.

Note, left hand side of (3.17) is zero with exact Brownian increment.
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