Lecture 5: Strong and Weak Solution

Zhongjian Wang*

Abstract
Strong and Weak Solution of SDE

1 Integral Formulation of SDE
SDE:
dXt e a(t, Xt)dt + b(t, Xt)th, (11)
and SIE: . .
X, = Xo—l—/ a(t,Xs)ds—i—/ b(s, Xs)dW;. (1.2)
0 0
Strong solution: for each BM W, and its filtration A;, each initial data X, there is a process
X;, t > 0, with continuous sample path such that X; is adapted to A;, and a solution of
SIE (1.2).

Uniqueness: for given initial data Xo, there is only one solution to SIE (1.2) either in the
mean square sense or pathwise sense: P(sup,eo 7 | X — Xi| > 0) = 0.

1.1 Sufficient Conditions

(A1) a, b are measurable in (¢, ), Lipschitz in z:

la(t,z) — a(t,y)| < K|z —yl,

|b(t, 2) — b(t,y)| < K|z —yl, (1.3)
for any t € [0, 7], z, y.
(A2) Linear growth bound:
jalt, 2) < K2(1+ [2P), [b(t, ) < K*(1+ [o), (1.4

for any t € [0,T], z, y.
(A3) X is Ay measurable, F(|Xo|?) < oo.
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1.2 Gronwall Inequality
If a(t) > 0 satisfies:
o) < 50+ [ als)ds
then: . ’
alt) < B() + L / M=) B (s) ds,
for t € [0,T7. 0

1.3 Uniqueness
1.3.1 Non-rigorous derivation

Suppose X, Y; are two solutions of SIE with same initial data, Z;, = X; — Y;:
t
2 = [ (als. X~ als. Yo)ds
0

+ [ (065, b, v, (15)

By Cauchy-Schwarz, mean square property of Ito integral, (A1):
t
E(|Z*) < 2E[| | (als,X,) — a(s, Y;))ds|’]

0
t

+ 25 0 (b(s, X,) — b(s, Ya))dW,|?]

ZT/O Ella(s, X.) — a(s, V.)[2lds

IN

+2/0 Elb(s, X.) — b(s, Y)[2]ds

< L/OtEHZSP}ds, (1.6)

L = 2(T + 1)K?. Gronwall implies E(]Z;|*) = 0, uniqueness in the mean square sense.
With more work, one can show that pathwise uniqueness also holds.

1.3.2 Rigorous Version

Let X, and X; be two such solutions of SIE on [0, T'] with, almost surely, continuous sample
paths. Since they may not have finite second moments, we shall use the following
truncation procedure: for N > 0 and t € [0, 7] we define
N 1 qu,f(uw’gz\fforogugt
. ><w>={ K@) | Xulw)

0 : otherwise




Obviously [t(N) is A; -measurable and [t(N) = It(N)IS(N) for 0 < s < t. Consequently the
integrals in the following expression are meaningful:

Zt(N) = It(N) /Ot ™) (a(s,Xs) —a (s,f(5>> ds (1.7)

¢
1™ / w (b (5,X,) — b (SX)> aw,
0
where Zt(N) = It(N) (Xt - )~(t> . From the Lipschitz condition we then have

maX{ ]S(N) (a (s,Xs) —a (s,)@))’ , ]S(N) (b(s,XS) —b (s,XS)>‘}
< K1) (XS ~X,|<2xN (1.8)

for 0 < s <t. Thus the second order moments exist for Z,fN) and the two integrals in (1.7).
Using the inequality (a + b)? < 2 (a* + b?), the Cauchy-Schwarz inequality, we obtain from

E ( Zt(N)’Q) <2F ( /Ot ™ <a (5, X,) —a <sX)) ds 2)

t
4 2F <| / ™ (b(s,XS) ) <3X> aw,
0

a [ o
By Y

which we combine with (1.8) to get

t
o[ f) < e e (zr) e
0

for t € [0,T] where L = 2(T + 1) K*. We then apply the Gronwall inequality to conclude

that
2 2
E(Zt(N)‘):E< ):0

and hence that ]t(N)Xt = ]t(N)Xt, w.p.1, for each ¢t € [0,T]. Note,

)
1 (a5, %) = a (s, %)) s
s

™ (Xt - Xt)

P (I§N> 21Vt € [o,T]) <P ( sup | X,| > N) 4P < sup ‘Xt

0<t<T 0<t<T

- ).



Since the sample paths are continuous almost surely they are bounded almost surely, we
can make the probability on the right arbitrarily small by taking N sufficiently large. This

means that P <Xt + )E't) =0 for each ¢ € [0, 7.

And then P (Xt +£X,:te D> = 0 for any countably dense subset D of [0,7]. As

the solutions are continuous and coincide on a countably dense subset of [0, 7, they must

coincide, almost surely, on the entire interval [0, 7] .

1.4 Existence

Picard iteration: : ¢
X=Xt [ als XDds [ bs XD,
0 0

X7 all measurable in A;, X = X,. Second moment estimate:
t
BT < SEIXP]+ 3E] [ a(s, X2)ds)
0

+ 3E]| /t b(s, W) dW,|?]

IA

3E[|Xo|?] + 3TE[/O la(s, X)|*ds]
+3E] /0 |b(s, X™)|*ds]

t
< 3E[Xo’] +3(T + 1)K2E[/ 1+ X
0
implying sup,c (.7 E[|X}|?] < Co < oo, for all n.
As in uniqueness:

t
B(XP — XIP) < L / E(X" — X7 P)ds

iterating:
LTL

E(‘thJrl - th|2) < (n — 1)|

By growth bound (A2):
t
B! - XOP) < L [ (14 B|XIP) < € < o
0
then (1.12):
B XM — X% < C L™t /n!,
or:

sup E(| X[ — X']*) < CLL"T"/n!,
te[0,7

t
/ (t—s)" B[ X} — X?M]ds.
0

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)



implying X' converges in mean square sense for ¢t € [0, 7.

Note: L% equipped with,

1 llaz = \/ / E(f(t,)2) dt (1.14)

is a Banach space space.

The limit is a solution of SIE (some work needed to achieve path-wise convergence and
then pass the limit).

1.5 Generalized results
1.5.1 Lipschitz Condition

Lipschitz condition in b can be replaced by Yamada condition:

|b(t,z) — b(t, y)| < p(|z —yl), p(0) =0, /+ p~*(u)du = +o0. (1.15)
0
One can take p(u) = u?, g € [1/2,1].
Ezxample:
SDE dX; = | X;|9dW;, Xy = 0, has unique solution if ¢ € [1/2,1].
But SDE:

1
dX, = §X3/3dt + X2 aw,, (1.16)
with initial data X, = 0 has nontrivial solution (hence nonuniqueness):

X, = (W,/3)%.

1.5.2 Growth Condition
Growth condition on a can be replaced by:
za(t,z) < K(1+ |z[?),
3

allowing a = x — x°.

But SDE: 1
dyY, = _56*2%& + e Yt dW,, (1.17)

has unique solution:
Y, = In(W, + ),



valid until time:
T = T(Yy(w)) = min{t > 0: Wy(w) + @ =0.}

Growth condition (A2) is not satisfied.
Higher moments: if E[|X,[*"] < oo,

E[IX,P") < (1+ E[|XoP)e, (1.18)

1.6 Stability

If as e — 0:
EB[|X§ — Xo|*] — 0,

sup |a(t,z) —a(t,x)] — 0, t € [0,T], VN,
lz|<N

sup [b(t,x) — b(t,x)] — 0, t € [0,T], VN,

lel<N

then (by Gronwall Inequality):

sup B[l X — X, )] — 0.
te[0,T]

Example: Solutions of SDE:
dX{ = a(t, X5)dt + edW,, (1.19)

converge in the mean square sense to those of deterministic ODE: X, = a(¢, X}) with same
initial data.



2 Diffusion Process and Weak Solution

2.1 Strong Solution as a diffusion process

Recall definition of Diffusion process,
Markov process with transition density is called diffusion process if the following
limits exist:

Jump:
1
lim / p(s, x5t y)dy =0,
tsstt— 8 ly—z|>€
Drift: |
lim / (y—l‘)p(s,iﬁ;t,y)dy:CL(S,ZL'),
t4)8+ t — S ‘y*fBlSe
Diffusion:

Theorem Assume that a and b are continuous and that A1-A3 hold. Then the solution
X, of (1.1) for any fixed initial value X, is a diffusion process on [tg, T with drift a(¢, x)
and diffusion coefficient b(t, z).

2.2 Diffusion process as a Weak Solution

Note as we turn investigate strong solution as a diffusion process, we only verify the tran-
sition density of the distribution.

Given a diffusion process, Y, on [0, 7] with drift a(¢,y) and strictly positive diffusion
coefficient b(t,y). Under some assumptions (see Theorem 4.7.1 in K-L’s book), we define
functions g and a by

g(t.y) = /Oy 4 (2.20)

and

(99  dg 1,0 1

with a and b evaluated at (¢,y), where y = g~*(, z) is the inverse of z = g(t,y) Then we
define a process Z; = ¢ (t,Y;), which is a diffusion process with drift a(t,z) and diffusion
coefficient 1.

And the process

t
Wy =2, — Zy— / a(s, Z,)ds (2.22)
0



which will turn out to be a Wiener process. (Some proof needed here.)
Consequently (2.22) will be equivalent to the stochastic differential equation

dZ, = a(t, Z;) dt + 1dW,

which, by (2.20),(2.21) and Ito’s formula, will imply that ¥; is a solution of the stochastic
differential equation

dY; = a (t,Y;) dt + b(t,Y;) dW,.

3 Backward and Forward Representations
Let X (t) be a diffusion process (solution of SDE) with drift a(t, z), diffusion b(¢, x):
dXt = adt + deta

consider the conditional expectation (s < t):

E(f(X)|X, = o) = / F(y) pls, 3t ) dy, (3.23)

where p(s,x;t,y) is the transition probability density function from (s,z) to (t,y). As a
function of (s, ), p satisfies the backward equation:

1
Ds + §b2(5, Z)pez + a(s, x)p, = 0. (3.24)

Hence u(s,z) = E(f(X;)|Xs = x) solves (3.24) with final condition u(t,z) = f(z).
For the forward representation, consider the Autonomous case, a = a(x), b = b(x).
Then p(s,t;z,y) = p(t — s;2,y), ps = —pr,

1
P = §b2(x)pm + a(z)py, t > s, (3.25)

p(t;z,y) = 6(y — x), as t — 0+. The transition probability density becomes fundamental
solution of parabolic equation (3.25). As a function of (¢, z),

U(t’ IL‘) = E(f(Xt)|Xs = I)v (326)

solves: .
vy = ibz(x)vm + a(x)v,, (3.27)
with initial data v(s,z) = f(x).

Eq. (3.26) is a probabilistic representation formula of PDE (3.27). It can be generalized
to include a lower order (potential) term as in Eqn:

1
wp = S0 (@) + alw), + V()w, ¢ >0, (3.28)

8



initial data: w(0,z) = f(x). The Feynmann-Kac formula is:

wlt,a) = £ |expf [ vexenans ik (3.29)

If the diffusion b(z) = 0, F-K formula reduces to a solution formula of first order hyperbolic
eqn by the method of characteristics.
To derive (3.29), let:

1 = |exp! / Dar X))

a linear bounded (nonnegative) operator on the space of bounded continuous functions.
Note:

t
exp{/ X)ds} =1 +/ V(Xs)ds + o(t),
0
as t — 0+. We have for any f(x) in the domain of T}:

w _ %(E[f(Xt)efgv(XS)ds]—f($)>

1
t

(BLF 0] = £@) + L) [ V(Xas
S @) /24 alw) )+ V(@) (3.30)

We have used (3.25) for the limit of first term.
To generalize F-K to nonautonomous case, treat ¢ as a parameter,

dXPT = a(th®, X0)ds + b(th®, X0 AW,
dth® = —ds, (3.31)
X" = x, t§® = t, symmetrically extending a, b: a(—7,2) = a(r,z) etc. View (3.31) as

a diffusion process on (t,x) € R? with time s. Eqs (3.31) are autonomous, and define a
Markov process (4%, X1 P). We then apply F-K (3.29). The result is:

w(t,x) = BEf(X}") exp{ [/0 V(t—s,X")ds|}, (3.32)

solves eqn:
1
wy = 51)2(15, T)Wyy + alt, x)w, + V (¢, x)w, (3.33)
w(0,z) = f(z).

All results generalize to higher space dimensions.



