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Effective diffusivities of passive scalars diffusion in incompressible velocity

fields have theoretical and practical importance. In this thesis, efforts have

been made to develop a Lagrangian approach to calculate effective diffusivities

and to analyze the error and physic phenomenons based on numerical results.

Our approach is to integrate the stochastic differential equations of the

particles by proposed discrete schemes via Monte Carlo methods. To compute

the effective diffusivities, we take the variance of the sampled positions divided

by computational time. The computational time should be longer than the

mixing time of dynamics, so the discrete schemes should preserve the inherent

structures of the dynamics.

Via backward error analysis techniques, we proved the proposed schemes

converge asymptotically with respect to the time step. Later on, we developed

a new proof to show the convergence is uniform in computational time. The

key ingredient of the proof is to propose discrete type cell problems, which

are analogs to cell problems in traditional parabolic homogenization theory.

And we concluded the schemes should preserve the invariant measure on torus

space introduced by the periodicity of velocity fields. We generalized the proof

to time-dependent cases and random cases.



Numerical examples were presented to verify the convergence in each case.

We calculated the effective diffusivities of chaotic and random flows, including

the Taylor Green field in two dimensions, the Arnold-Beltrami-Childress flow

and Kolmogorov flow in three dimensions and also their generalizations to

time-dependent and random cases. We investigated the convection-enhanced

diffusion phenomenon in the large Péclet number regime. Our results showed

that the diffusion enhancement has a strong correlation to mixing time and

Lyapunov exponent.
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Chapter 1

Introduction

1.1 Overview

Diffusion enhancement in fluid advection is a fundamental problem to char-

acterize and quantify the large-scale effective diffusion in fluid flows containing

complex and turbulent streamlines, which is of great theoretical and practi-

cal importance, see [5, 16, 18] and references therein. Its applications can be

found in many physical and engineering sciences, including atmosphere/ocean

science, chemical engineering, and combustion. In this thesis, we shall study

a passive tracer model, which describes particle motion with zero inertia:

Ẋ(t) = v(t,X) + σWt, X ∈ Rd, (1.1)

where X is the particle position, σ ≥ 0 is the molecular diffusion coefficient,

and Wt ∈ Rd is a white noise. The velocity v(x, t) satisfies either the Euler or

the Navier-Stokes equation. We will also investigate when v(t, x) is modeled

by a random field which mimics energy spectra of the velocity fields. We set

v(t, x) = ∇⊥φ(t, x) and the streamline function φ satisfies φt = Aφ+
√
Qζ(t, x),

which is a random field generated by appropriately choosing operators A and

Q and ζ(x, t) is a space-time white noise independent of Wt.

For spatial-temporal periodic velocity fields and random velocity fields with

short-range correlations, the homogenization theory [4, 24, 29, 43] confirms
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1.1. Overview

that the long-time large-scale behavior of the particles is governed by a Brow-

nian motion. More precisely, let DE ∈ Rd×d denote the effective diffusivity

matrix and Xε(t) ≡ εX(t/ε2). Then, Xε(t) converges in distribution to a

Brownian motion W̃ (t) with covariance matrix DE, i.e., Xε(t)
d−→
√

2DEW̃ (t).

The DE can be expressed in terms of particle ensemble average (Lagrangian

framework) or cell problems (Eulerian framework). The dependence of DE on

the velocity field of the problem is highly nontrivial. Moreover, the scaling of

DE when the monocular diffusion vanishes attracts great attention.

The residual diffusivity refers to the non-zero effective diffusivity in the

limit of zero molecular diffusion as a result of a fully chaotic mixing of the

streamlines. It is expected that the corresponding long-time large-scale be-

havior will follow a different law and sensitively depend on the velocity fields.

In [36], the authors solved computed the cell problem of the advection-diffusion

type and observed the residual diffusion phenomenon. This approach allows

adaptive basis learning for parameterized flows.

For time-independent Taylor-Green velocity field, the authors of [44] pro-

posed a stochastic splitting method and calculated the effective diffusivity in

the limit of vanishing molecular diffusion. It is theoretically shown and numer-

ically observed that the effective diffusion is greater in scale than molecular

diffusion (σ) but still vanishing as σ vanishes.

Due to the energy estimate of cell problems in homogenization theory, it

is well known that the scaling of enhancement is not greater than 1
σ2 . In [5],

the maximum enhancement was studied. It is found by numerical experiments

that in ABC flows, the scaling is likely 1
σ2 . There is no further result as their

approach is costly for small σ.

For random velocity fields with long-range correlations, various forms of

anomalous diffusion, such as super-diffusion and sub-diffusion, can be obtained

for some exactly solvable models (see [37] for a review). In [8] the authors

proved the existence of the effective diffusivity for a two-dimensional time-

dependent incompressible Gaussian velocity field. In [35], the authors proved

2



1.1. Overview

the homogenization of convection-diffusion in a time-dependent, ergodic, in-

compressible random flow. In [17, 19], the authors proved some necessary

conditions under which the long-time behavior for convection-diffusion in a

turbulent flow is diffusive. Those results show that the dependence of the ef-

fective diffusivity upon the molecular diffusion σ and the velocity field v in

the random flow is complicated and how to describe this dependence is very

difficult in general.

This motivates us to study numerically the dependence of DE on compli-

cated incompressible velocity fields. We will also investigate the scaling of

enhancement in vanishing diffusion regime for several different velocity fields.

However, the solutions of the advection-diffusion equation develop sharp gra-

dients as molecular diffusion approaches zero and demand a large amount of

computational costs in standard Fourier basis. To overcome this difficulty, we

shall adopt the Lagrangian framework and compute an ensemble of particles

governed by Eq.(1.1) directly.

Though there are several prior works on structure-preserving schemes for

ODEs and SDEs, the novelty of this thesis is the rigorous theory in the numer-

ical error analysis in computing the effective diffusivity and investigation of

nonlinear/random phenomena, such as the different scale of effective diffusion

in different flows.

The error is analyzed first asymptotically and then uniformly in computa-

tional time.

We first get inspired by the symplectic integrators in the Hamiltonian sys-

tem. In [27], broad topics in dynamics of Hamiltonian system and its numerical

approximation are reviewed. As the dynamics of deterministic Hamiltonian

system preserves its Hamiltonian, we naturally hope the numerical scheme

can preserve the Hamiltonian in discrete time. Generally speaking, such struc-

ture preserving schemes are called symplectic integrators. In two dimension,

a separable Hamiltonian implies each component of the velocity field is inde-

pendent of the corresponding component of x. Such v is divergence free and

3



1.1. Overview

if the Hamiltonian is periodic in space, then mean of v along each direction is

zero. Base on these, we adopt a composite scheme[41] whose first step is the

symplectic Euler scheme and second is Euler Maruyama scheme following the

Brownian dynamics.

Backward Error Analysis (BEA) [46] is a great tool for estimating error of

symplectic integrators. Weak backward error analysis in [11] is the general-

ization of BEA theory to SDEs. We will apply weak BEA to our symplectic

operators and prove the error of effective diffusivities converges asymptotically.

Specifically, we can remove the exponentially error growth in the first order

term (with respect to time step) of Lyapunov estimate of error of Euler scheme

(i.e. first term right hand side of Eq.(2.10)).

To improve the error analysis, we will explore the cancellation in discrete

schemes. We view the integrator as a discrete flow operation given by a con-

volution kernel. We re-define the Poisson equation (cell problem) in discrete

manner, named discrete cell problem. It is also the discretization of Green-

Kubo formula in asymptotic analysis [45]. The discrete cell problem reflects

the cancellation in homogenization theory. Base on this characteristic, we

prove the convergence is uniform in computational time.

The last step in error analysis is to revisit the proof and explore the possi-

bilities of generalization. We claim that the key structure to preserve thought

such systems is the invariant measure and mean zero advection. So we com-

bine the volume preserving schemes and Euler method for Brownian dynamics

to integrate time-dependent and random flows in higher dimension. We also

extend our proof to such cases.

In numerical study part, our study compute the effective diffusivities of

chaotic and random flows in 2D and 3D, including Taylor-Green, Arnold-

Beltrami-Childress (ABC), Kolmogorov and random flows generated by corre-

sponding spectral measures. We verify the convergence rate for each case, i.e.,

time-independent, time-dependent, random. The convergence in our analysis

is shown to be optimal in order and uniform in computational time.
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1.2. Summary of the thesis

Further more, we study diffusion enhancement phenomena in vanishing

monocular diffusivity regime. Our results reveal the correlation between the

scale of effective diffusivities and several chaotic quantities including, Lyapunov

exponent, mixing time. Overall speaking, when the flow is more chaotic, the

scale varies from maximal to sub-maximal, residual then vanishing; the mixing

time becomes shorting and the Lyapunov exponent increases.

1.2 Summary of the thesis

This thesis is divided into four parts.

The first part of the thesis plays an introductory role. In Chapter 1, we

overview the significance and existed study of effective diffusivities. In Chap-

ter 2, we review the tools we may use in our analysis including numerical

integrators to stochastic differential equations, probabilistic approach in ho-

mogenization theory and the an ergodic theorem in the probabilistic approach.

As the second part, Chapter 3, we view the our scheme as a modified sym-

plectic integrator then analyze the error via backward error analysis. Vanishing

and residual diffusion phenomena are studied in chaotic and random 2D flows.

The third part consists of Chapter 4, Chapter 5, Chapter 6. We introduce

the novel uniform in time error analysis technique in time-independent, time-

dependent, random flows correspondingly. Diffusion enhancement in 3D are

divided into three types, residual, sub-maximal and maximal. The specific

velocity fields includes ABC, Kolmogorov and random ones generated from

energy spectra.

In the last part, Chapter 7, we give conclusion remarks and future direction.

Additionally, lists of notations and abbreviations adopted in this thesis are

given in the Appendix.

5



Chapter 2

Preliminaries

2.1 Passive tracer model

In this section, we will first introduce the passive tracer model described

by a stochastic differential equation. The definition of stochastic differential

equation (SDE) and its numerical approximation will be discussed in the sub-

sequent subsections.

A flow tracer uses any property of fluid to track the flow. The property

may includes magnitude, direction and circulation patterns. A passive tracer

indicates it has no influence on the flow. In context of my thesis, we will

consider the concentration of some specific kinds of particles. Then in the

passive tracer model, we assume the motion of these particles does not alter the

velocity field they follow. To replicate the diffusion phenomenon, we assume

the motions of particles are independent from each other and any one of them

can be described by the following stochastic differential equation,

Ẋ(t) = v(X) + Σ(X)Wt, X ∈ Rd, (2.1)

where X(t) is the position of the particle at time t. v(X) is the Eulerian veloc-

ity field at position X, continuously differentiable. It defines the convection of

the dynamics. Σ > 0 is the molecular diffusion coefficient matrix. Wt is a Gaus-

sian white noise with zero mean and correlation function 〈W i
tW

j
t′〉 = δijδ(t−t′).

6



2.1. Passive tracer model

In most cases, the covariance matrix of the random parts of the dynamics, i.e.

ΣΣT is positive definite, it corresponds to non-degenerate elliptic operator as

its generator. In context of this thesis, we assume Σ(X) = σId, where σ > 0

is a constant and Id is identity matrix in Rd. Colored noise cases will studied

in my future work.

2.1.1 Stochastic differential equation

In this subsection, we introduce a more general setting of SDE than in

Eq.(2.1). It is adopted in [32] and detailed properties can also be found in

[30, 42]. A general SDE is considered in the symbolic differential form,

dXt = a(Xt)dt+ b(Xt)dWt, (2.2)

or more accurately as an integral equation,

Xt = X0 +

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)dWs. (2.3)

The second integral is an Ito integral along the Brownian motion Wt. Wt is a

Brownian motion on the given probability space {Ω,Ft, P}. Ω is the set of all

possibilities, {Ft, t ≥ 0} is an increasing family of σ-algebras such that Wt is

Ft-measurable for each t ≥ 0, P is the probability measure on Ω. In Rd, Wt

denotes a vector whose components are W1,t, W2,t, · · · , Wd,t. We call Xt is a

strong solution if Xt satisfies Eq.(2.3), is Ft-measurable and square-integrable

over Ω.

To make sure the existence of the strong solution, we suppose a and b are

Lipschitz continuous and linear growth. The Lipchitz constants are L1 and L2.

And the linear growth constants are G1 and G2. i.e. ∀x, y ∈ Rd

||a(x)− a(y)|| ≤ L1||x− y||

|b(x)− b(y)| ≤ L2||x− y||

||a(x)||2 ≤ G1(1 + ||x||2)

||b(x)||2 ≤ G2(1 + ||x||2)

(2.4)

7



2.1. Passive tracer model

Theorem 2.1 (Existence of Strong Solution, Theorem 5.2.9 of [30]). In the

SDE Eq.(2.3), a and b satisfy Eq.(2.4). Then on (Ω,Ft, P ), let X0 be an

random vector, independent of the Brownian motion Wt, and

E||X0||2 <∞ (2.5)

Then there exists a continuous, adapted process Xt which is an unique strong

solution of Eq.(2.3).

2.1.2 Numerical approximation to SDE

When approximating the SDE in a specific filtration generated by the Brow-

nian motion talked before, we cannot calculate infinitely many points of one

path of the Brownian motion by computer. So, we first suppose T > 0 and only

concern about the error in [0, T ]. We suppose 0 = t0 < t1 < t2 < ... < tn = T

be a frozen partition of [0, T ], and we only calculate {Wtk}nk=0 for the approx-

imation. Foot step δ is defined by

δ = max
k=1···n

|tk − tk−1|. (2.6)

Throughout the thesis, we adopt uniform mesh, i.e., tn = n∆t. Then δ = ∆t.

Euler-Maruyama (EM) scheme is broadly used in integrating Eq.(2.3). Here

we study the error of this conventional method and comparing it with our

schemes which is proposed later.

Definition 2.1. In Euler’s Scheme, we use a generator to give a standard

Brownian motion path Wt. We first approximate in discrete time.

Zn+1 = Zn + a(Zn)(tn+1 − tn) + b(Zn)(Wtn+1 −Wtn) (2.7)

with

ns = max{n : tn ≤ s} (2.8)

Then we give an adapted interpolation.

Ys = Zns + a(Yns)(s− tns) + b(Yns)(Ws −Wtns
) (2.9)

8



2.2. Homogenization theory

Analysis of general numerical integrators of SDEs can be found in [32]. For

the Euler-Maruyama Scheme, in [53], the dependence on Lipschitz and growth

factor in error estimate is explicitly shown in the following theorem.

Theorem 2.2 (Error Estimation for EM scheme,[53]). Xt and Yt are defined

in Eq.(2.3) and Eq.(2.1). a, b satisfies Eq.(2.4). Given T , suppose X0 = Y0

a.s. then

sup
s≤T

E||Xs − Ys||2 =≤ ∆t
c2

c1

ec1T + δ2c2 (2.10)

in which, c1 = 1 + (4 + 2∆t)L2
1 + 4L2

2, c2 = ((2 + ∆t)L2
1 + 2L2

2)c(T ) and

c(T ) = (1 + e(1+G2
1+2G2

2)T (1 + EX2
0 ))(G2

2 + 2TG2
1).

Base on this, for different computational time T we expect the error grows

exponentially fast against T .

2.2 Homogenization theory

In this subsection, we will introduce effective diffusivity for time-independent

flows in homogenization theory. The velocity v(X) in Eq.(1.1) is assume to be

time-independent. In Chapter 3,5 and 6, we will generalize the study to other

cases , including time-dependent flows and random flows. We will consider

the classic homogenization from probabilistic viewpoint. It is well discussed

in Chapter 3 of [4] and we outlined a simplified version here for sake of com-

pleteness.

2.2.1 Probabilistic approach

To study the large scale diffusion of Eq.(2.1), we re-scale X(t) by,

Y ε = εX(t/ε2). (2.11)

Then, we assume equation of yε in form of,

dY ε =
1

ε
v(
Y ε

ε
) + σdw(s). (2.12)

9



2.2. Homogenization theory

But comparing with Eq.(2.1) we know, w is a Gaussian white noise with zero

mean and correlation function 〈wi(t)wj(t′)〉 = δijδ(t − t′). w(t) is same with

Wt in distribution. Denoting distribution of Y ε(t) starting from x as µεxt.

To assuring the existence of effective process, we assume v periodic in O(1)

scale in space and mean zero in space. Without loss of generality, the period

of v(x) is assumed to be 1 in each dimension of the physical space. We denote

the periodic space by Y = Td.

One natural way to study the expectation of the paths for the SDE given

by the Eq.(2.1) is to consider its associated backward Kolmogorov equation.

Specifically, given a sufficiently smooth function φ(x) in Rd, let u(x, t) =

E(φ(Xt)|X0 = x) and Xt = (x1(t), ..., xd(t))
T is the solution to Eq.(2.1), then

u(x, t) satisfies the backward Kolmogorov equation as

ut = Lu, u(x, 0) = φ(x). (2.13)

In Eq.(2.13), the generator L is defined as

Lu = v · ∇u+D04u, (2.14)

where D0 = σ2/2 is the diffusion coefficient. Denote by L∗ its formal adjoint,

L∗u = −∇ · (vu) +D04u, (2.15)

Let ρ(x, t) denote the density function of the particle X(t) of Eq.(2.1). Then,

ρ(x, t) satisfies the Fokker-Planck equation ρt = L∗ρ with the initial density

ρ(x, 0) = ρ0(x), where ρ0(x) is the density of the particle X(0).

Proposition 2.1 (Fredholm alternative for the evolution operator). The ho-

mogeneous equations,

Lz = 0, z periodic in Y , (2.16)

L∗µ = 0, µ periodic in Y , (2.17)

exist one and only one solution (up to a multiplicative constant). Let φ, ψ

satisfies, ∫
Y

φµ = 0 (2.18)∫
Y

ψ = 0, (2.19)

10



2.2. Homogenization theory

then there exists one and only one solution of the inhomogeneous equations,

Lξ = φ,

∫
Y

ξ = 0, (2.20)

L∗π = φ,

∫
Y

π = 1. (2.21)

We further assume v(x) is incompressible (i.e. ∇x · v(x) = 0). As we know

L∗ is the evolution operator for the Fokker-Planck equation on the density

function of X, µ in Eq.(2.18) (up to a constant) is the invariant measure of

X on torus space Y . A incompressible v implies µ is the Lebesgue (uniform,

Haar) measure.

Now we can claim for the main result in our probabilistic approach,

Proposition 2.2 (Theorem 10.8 in Chapter 3 of [4]). By previous assumption

on regularity, mean, incompressibility of v, let χ to be solution of cell problem,

−Lv := −D04χ− v(y) · ∇χ = v(y), y ∈ Td. (2.22)

Let DE be the effective diffusivity matrix,

DE = D0I −
∫
Y

v ⊗ χ (2.23)

Let y(t) be the Gaussian process whose correlation matrix is given by 2DE and

its distribution starting from x be µxt.

Then, when ε→ 0,

∀x, t, µεxt → µxt, weakly. (2.24)

An ergodic theorem in the proof Before continuing to study of effective

diffusivities, we would like to review an ergodic theorem, which is the key in the

proof of Proposition 2.2. We shall also see later that it plays fundamental role

in our proof. The theorem is stated in very general setting to accommodate

both continuous case and our discrete case.

Let (S,Σ) be a probability space, on which a family P (x,E), x ∈ S, E ∈ Σ,

of probability measure is defined. We assume x→ P (x,E) is measurable, ∀E ∈

11



2.2. Homogenization theory

Σ. This corresponds to a linear bounded operator on B(S). This operator,

denoted by P , is defined by,

Pφ(x) =

∫
S

P (x, dz)φ(z), ∀φ ∈ B(S). (2.25)

Clearly ||P || ≤ 1. One of the main objectives of ergodic theory is to study

the limit of the operator sequence P n as n → +∞. The result can be sum-

marized into the following proposition, which plays a fundamental role in our

convergence analysis.

Proposition 2.3 (Theorem 3.1 in Chapter 3 of [4]). We assume that,

1. S is a compact metric space, and Σ is the Borel σ-algebra;

2. there exists a probability measure µ on (S,Σ) such that

P (x,E) =

∫
E

p(x, y)µ(dy);

3. p(x, y) : S × S → R+ is continuous;

4. there exists a ball U0 such that µ(U0) > 0 and a positive number δ > 0

(depending on U0) such that p(x, y) ≥ δ, x ∈ S, ∀y ∈ U0.

Then, there exists one and only one invariant probability measure (π) on (S,Σ)

and one has,

sup
x∈S

∣∣∣P nφ(x)−
∫
φπ(dx)

∣∣∣ ≤ C||φ||e−ρn, ∀φ ∈ B(S), (2.26)

where ρ = log 1
1−δµ(U0)

> 0 and C = 2
1−δµ(U0)

> 0 are independent of φ.

2.2.2 Effective diffusivities

In this subsection, we will discuss more on effective diffusivity including its

Eulerian and Lagrangian approach, and scale in vanishing D0 regime.

By multiplying χ to Eq.(2.22) and integrating in Td with consideration of

periodicity of χ and v, we will get another equivalent formula for the effective

12



2.2. Homogenization theory

diffusivity,

DE = D0I +D0

∫
Y

∇χ⊗∇χ. (2.27)

The correction to D0 is nonnegative definite in Eq.(2.27). We can see that

eTDEe ≥ D0 for all unit column vectors e ∈ Rd, which is called convection-

enhanced diffusion. By using energy estimate of Eq.(2.22), one can find a

upper bound for the effective diffusivity, i.e., for all nonzero unit column vector

e ∈ Rd, we have

eTDEe � 1

D0

, as D0 → 0. (2.28)

More details of the derivation can be found in [5, 16, 40]. We are interested

in studying the scale of convection-enhanced diffusion phenomenon for chaotic

and random flows in this thesis. We will see in Taylor Green field, DE ∼
√
D0

as Fig.3.2. The residual diffusivity phenomenon means DE will converge to

a constant. We will see it happens when the flow strong mixing like, time-

dependent flows and random flows in Fig.3.5 and Fig.5.6. When the flow is

less chaotic, stronger diffusion enhancement happens. See Fig.4.2 for the result

of the ABC flow obtained using our method. It probably attains the upper

bound given by Eq.(2.28), which is called convection-enhanced diffusion with

maximal enhancement [40].

In practice, the cell problem (2.22) can be solved using numerical methods,

such as spectral methods. In [36], a small set of adaptive basis functions were

constructed from fully resolved spectral solutions to reduce the computation

cost. However, when D0 becomes extremely small, the solutions of Eq.(2.22)

develop sharp gradients and demand a large number of Fourier modes to re-

solve, which makes the Eulerian framework computationally expensive and

unstable.

Alternatively, one can use the Lagrangian framework to compute the effec-

tive diffusivity matrix, which is defined by,

DE
ij = lim

t→∞

〈(
xi(t)− xi(0))(xj(t)− xj(0)

)〉
2t

, 1 ≤ i, j ≤ d, (2.29)

13



2.2. Homogenization theory

where X(t) = (x1(t), ..., xd(t))
T is the position of a particle tracer at time t

and the average 〈·〉 is taken over an ensemble of test particles. The equivalence

to Eq.(2.23) is due to the weak convergence given in Prop.2.2.

If the above limit exists, that means the transport of the particle is a

standard diffusion process, at least on a long-time scale. If the passive tracer

model has a deterministic divergence-free and periodic velocity field, this is

the typical situation, i.e., the spreading of the particle
〈(
xi(t)−xi(0))(xj(t)−

xj(0)
)〉

grows linearly with respect to the time t. For example when the

velocity field is given by the Taylor-Green velocity field [16, 44], the long-time

and large-scale behavior of the passive tracer model is a diffusion process.

However, there are also cases showing that the spreading of particles does not

grow linearly with time but has a power law tγ, where γ > 1 and γ < 1

correspond to super-diffusive and sub-diffusive behaviors, respectively [2, 5,

37].

We shall consider the Lagrangian approach in this thesis. The Lagrangian

framework has the advantages that it is easy to implement and does not directly

suffer from a small molecular diffusion coefficient σ during the computation.

However, we should point out that the major difficulty in solving Eq.(2.1)

comes from the fact that the computational time should be long enough to

approach the diffusion time scale. The diffusion time (a.k.a, mixing time, dis-

sipation time) may be as long as O( 1
D0

). By reviewing the Lyapunov type error

estimate in Proposition 2.2, we know the EM or other general schemes may

fail. To address this challenge, we shall develop robust numerical integrators,

which are structure-preserving and accurate for long-time integration.

14



Chapter 3

Symplectic Schemes and

Asymptotic Error Analysis

3.1 New stochastic integrators

In this section, we construct the new stochastic integrators for the passive

tracer model, which is based on the operator splitting methods [38, 51]. We

consider the following two-dimensional model problems to illustrate the main

idea and emphasize that our method can be used to solve high-dimensional

problems without any difficulty,dx1 = v1(t, x1, x2)dt+ σ1dW1,t, x1(0) = x10,

dx2 = v2(t, x1, x2)dt+ σ2dW2,t, x2(0) = x20.

(3.1)

Furthermore, we assume that there exists a Hamiltonian function H(t, x1, x2)

such that

v1(t, x1, x2) = −∂H(t, x1, x2)

∂x2

, v2(t, x1, x2) =
∂H(t, x1, x2)

∂x1

. (3.2)

In this chapter, we assume that the Hamiltonian H(t, x1, x2) is sufficiently

smooth and that first order derivatives of vi(t, x1, x2), i = 1, 2 are bounded.

These conditions are necessary to guarantee the existence and uniqueness of

solutions of Eq.(3.1), see [42]. Moreover, the boundedness of some higher order
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3.1. New stochastic integrators

derivatives of vi(t, x1, x2) is required when we prove the convergence analysis

in Section 3.2.

We first rewrite the particle tracer model Eq.(3.1) into an abstract form

Ẋ = LX, where X = (x1, x2)T . We then split the operator L into two opera-

tors Li, i = 1, 2, where

L1 : dx1 = v1(t, x1, x2)dt, dx2 = v2(t, x1, x2)dt, (3.3)

L2 : dx1 = σ1dW1,t, dx2 = σ2dW2,t, (3.4)

corresponding to the deterministic part and the stochastic part, respectively.

Finally, we apply composition methods to approximate the integrator ϕ(τ) =

exp(τ(L1 +L2)) generated from Eq.(3.1). Though the operator splitting meth-

ods have been successfully applied to various problems, there is limited work on

solving SDEs and SPDEs. We refer to [6, 41] for recent works on Hamiltonian

systems with additive noise.

We approximate the integrator ϕ(τ) by the Lie-Trotter splitting method

and get

ϕ(τ) = exp(τ(L1 + L2)) ≈ exp(τL1)exp(τL2). (3.5)

Now we discuss how to discretize the numerical integrator Eq.(3.5). From

time t = tk to time t = tk+1, where tk+1 = tk + τ , t0 = 0, assuming the

solution (xk1, x
k
2)T ≡ (x1(tk), x2(tk))

T is given, one can solve the subproblems

corresponding to L1 and L2 in a small time step τ to obtain (xk+1
1 , xk+1

2 )T .

In our numerical method, we discretize the operator L1 by numerical schemes

that preserve symplectic structure and the operator L2 by the Milstein scheme

[42], so we obtain the new stochastic integrators for Eq.(3.1) as follows,x
∗
1 = xk1 + τv1

(
tk + βτ, αx∗1 + (1− α)xk1, (1− α)x∗2 + αxk2

)
,

x∗2 = xk2 + τv2

(
tk + βτ, αx∗1 + (1− α)xk1, (1− α)x∗2 + αxk2

)
,

(3.6)

where the parameters α, β ∈ [0, 1] andx
k+1
1 = x∗1 + σ1∆kW1,τ ,

xk+1
2 = x∗2 + σ2∆kW2,τ ,

(3.7)
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3.2. Convergence analysis

with ∆kWi,τ = Wi,tk+τ − Wi,tk , i = 1, 2. In practice, each ∆kWi(τ) is an

independent random variable of the form
√
τN (0, 1).

The symplectic-preserving schemes Eq.(3.6) are implicit in general. Com-

pared with explicit schemes, however, they allow us to choose a relatively large

time step to compute. In practice, we find that few steps of Newton iterations

are enough to maintain accurate results. Therefore, the computational cost

is controllable. To design adaptive time-stepping method for Eq.(3.1) is an

interesting issue, which will be studied in our future work.

In general, the second-order Strang splitting [51] is more frequently adopted

in application, for which the integrator ϕ(τ) is approximated by

ϕ(τ) = exp(τ(L1 + L2)) ≈ exp(
τ

2
L2)exp(τL1)exp(

τ

2
L2). (3.8)

In fact, the only difference between the Strang splitting method and the Lie-

Trotter splitting method is that the first and last steps are half of the normal

step τ . Thus a more accurate method can be implemented in a very simple

way. We skip the details in implementing the Strang splitting scheme here as

it is straightforward.

We remark that our new stochastic integrators provide an efficient way

to investigate the residual diffusivity. Because we do not need to solve the

advection-diffusion equation Eq.(2.22), which becomes extremely challenging

when D0 is small. Most importantly, symplectic-preserving schemes provide a

robust and accurate numerical integrator for long-time integrations. We shall

theoretically and numerically study its performance over existing numerical

integrators, such as Euler schemes, in the subsequent sections.

3.2 Convergence analysis

In this section, we shall provide some convergence results. We prove that

a linear growth of the global error can be obtained if we apply our numerical

methods to solve a Hamiltonian system with a separable Hamiltonian. In
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3.2. Convergence analysis

addition, we shall estimate the numerical error of our method in computing

the effective diffusivity. Our analysis is based on the BEA technique [46],

which is a powerful tool for the study of the long-time behaviors of numerical

integrators.

3.2.1 Weak Taylor expansion

In our derivation, we use (p, q) to denote the position of the particle inter-

changeably with (x1, x2). Thus, the Hamiltonian system defined by Eq.(3.1)

is rewritten as dp = −Hqdt+ σdW1,t,

dq = Hpdt+ σdW2,t,

(3.9)

where H ≡ H(t, p, q) is the Hamiltonian, σ1 = σ2 = σ is a positive constant,

and dWi,t, i = 1, 2 are two independent Brownian motion processes. We

assume the Hamiltonian system has a separable form [27]

H(t, p, q) = F (t, p) +G(t, q) (3.10)

with g ≡ Hq = g(t, q) and f ≡ Hp = f(t, q).

Remark 3.1. The separable Hamiltonian is quite a natural assumption and

has many applications in physical and engineering sciences. For instance,

H(p, q) = 1
2
pTp + U(q), where the first term is the kinetic energy and the

second one is the potential energy.

One natural way to study the expectations of the paths for the SDE given

by Eq.(3.9) is to consider its associated backward Kolmogorov equation [47].

Specifically, we associate the SDE with a partial differential operator L0, which

is called the generator of the SDE, also known as the flow operator. For

the Hamiltonian system Eq.(3.9), the corresponding backward Kolmolgorov

equation associated is given by
∂
∂t
φ = L0φ,

φ(x, 0) = φ0(x),

(3.11)
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3.2. Convergence analysis

where the operator L0 is given by

L0 = −g∂p + f∂q +
1

2
σ2∂2

p +
1

2
σ2∂2

q . (3.12)

The probabilistic interpretation of Eq.(3.11) is that given initial data φ0(x),

the solution of Eq.(3.11), φ(x, t), satisfies φ(x, t) = E(φ0(Xt)|X0 = x), where

Xt = (p(t), q(t)) is the solution to Eq.(3.9). We integrate Eq.(3.11) from t = 0

to t = ∆t and obtain

φ(x,∆t) = φ(x, 0) + L0

∫ ∆t

0

φ(x, s)ds. (3.13)

Under certain regularity assumptions on the solution φ(x, t), we have the Tay-

lor expansion

φ(x, s) = φ(x, 0) + s
∂

∂s
φ(x, 0) + · · ·+ sN

N !

∂N

∂sN
φ(x, 0) +RN(x, s), (3.14)

where RN(x, s) is the remainder term in the Taylor expansion. We substitute

the Taylor expansion Eq.(3.14) into Eq.(3.13) and get

φ(x,∆t) = φ(x, 0) + ∆tL0φ(x, 0) +
N∑
k=1

∆tk+1

(k + 1)!
L0

∂k

∂sk
φ(x, 0) +O(∆tN+2).

(3.15)

Recall that φ(x, 0) = φ0(x) and ∂k

∂sk
φ(x, 0) = Lk0φ0(x), we finally obtain

φ(x,∆t) = φ0(x) +
N∑
k=0

∆tk+1

(k + 1)!
Lk+1

0 φ0(x) +O(∆tN+2). (3.16)

The operator Lk+1
0 can be computed systematically. For instance, L0 has 4

terms, then L2
0 should have at most 42 = 16 terms. We find that the first

order modified equation has already indicated the advantage of the structure

preserving scheme and shall show this in next subsections.

Remark 3.2. Eq.(3.16) provides the general framework for us to analyse the

truncation error by numerical methods. Namely, the numerical flow φnum(x,∆t) =

E[φ0(Xnum,k
∆t )|X0 = x] generated by some k-th order weak method should satisfy

Eq.(3.16) up to terms of order O(∆tk).
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3.2. Convergence analysis

3.2.2 First order modified equation

In this section, we shall analyze the numerical errors obtained by our sym-

plectic splitting scheme and Euler Maruyama scheme [32], respectively. We

find that the solution obtained by the symplectic splitting scheme follows an

asymptotic Hamiltonian while the solution obtained by the Euler Maruyama

scheme does not. With our new method, we can achieve a linear growth (in-

stead of an exponential growth) of the global error when we compute effective

diffusivity.

After numerical discretization, we find the following expansion using a first

order weak method at t = ∆t,

φnum(x,∆t) = φ0(x) + ∆tL0φ0(x) + ∆t2A1φ0(x) +O(∆t3), (3.17)

where A1 is a partial differential operator acting on φ0(x) that depends on the

choice of the numerical method used to solve Eq.(3.9). If we choose a con-

vergent method to discretize the operator L0 in Eq.(3.17) and Eq.(3.15), then

the local truncation error is O(∆t2) and the numerical scheme is of weak order

one. We refer to [32] for the definition and discussion of the weak convergence

and strong convergence.

In detail, let Xnum(∆t) = (p(∆t), q(∆t)) denote the numerical solution

obtained by one specific choice of the numerical method in solving Eq.(3.9).

For instance, if we choose the symplectic splitting method stated in Eq.(3.7),

we get p(∆t) = p0 −∆tg(∆t
2
, q0) + σ∆W1,

q(∆t) = q0 + ∆tf(∆t
2
, p0 −∆tg(∆t

2
, q0)) + σ∆W2.

(3.18)

Now ∆W1, ∆W2 are two independent random variables of the form
√

∆tN (0, 1).

To get A1, we only need to expand E(φ0(p(∆t), q(∆t))) around point φ0(p0, q0)

along the time variable ∆t. Since we are dealing with a separable Hamiltonian

H, the operator splitting scheme helps us obtain a straight-forward adaptive

interpolation of Eq.(3.18) for t ∈ [0,∆t], saying Xnum
t . We then have the
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form[56],

φnum(x, t) = E[φ0(Xnum
t )|X0 = (p0, q0)] (3.19)

= φ0(x) + ∆tL0φ0(x) + ∆t2A1φ0(x) +O(∆t3) (3.20)

In the BEA [46], we aim to find the generator Lnum of this process and the

associated backward Kolmogorov equation,
∂
∂t
φnum = Lnumφnum

φnum(x, 0) = φ0(x).

(3.21)

We now denote the generator of this modified equation in an asymptotic form

in terms of ∆t,

Lnum ≡ L0 + ∆tL1 + ∆t2L2 + · · ·. (3.22)

Recall that the operator L0 is defined in Eq.(3.12) and the definition of op-

erators Li, i ≥ 1 depends on the choice of the numerical method in solving

Eq.(3.9), i.e. sub (3.22) into (3.16) then compare with (3.20), we get

L1 = A1 −
1

2
L2

0. (3.23)

Now let us denote the truncated generator by,

L∆t,k := L0 + ∆tL1 + · · ·+ ∆tkLk. (3.24)

and denote the corresponding modified flow (if it exists),
∂
∂t
φ∆t = L∆t,kφ∆t

φ∆t(x, 0) = φ0(x).

(3.25)

Inspired by the weak convergence proof in [32], we shall focus on estimating

the upper bound of the uniform numerical error for the perturbed flows.

Lemma 3.1. Let φnum and φ∆t be defined in (3.21) and (3.25), respectively.

We assume that φ0 ∈ C∞ and its Ito-Taylor expansion coefficients in the hier-

archy set Γk+1

⋃
B(Γk+1) are Lipschitz and have at most linear growth. If the

solution to the first order modified flow, φ∆t converges to φ as ∆t → 0, then

we have the following error estimate

||φnum(x, t)− φ∆t(x, t)|| ≤ C(T )∆tk+1 (3.26)
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Proof. Eq.(3.17) shows that the operator L∆t approximates the operator L∆t,k

locally in the time interval [0,∆t] with the truncation error O(∆tk+2). This

implies that X∆t
t is a k + 1-th order weak approximation to the SDE related

to X∆t,k
t locally, i.e.

φ0(Xnum
∆t )− φ0(X∆t,k

∆t ) = φ0(Xnum
0 )− φ0(X∆t,k

0 ) +
∑

α∈B(Γk+1)

Iα[φ0,α(X∆t,k
(·) )]0,∆t

(3.27)

Here we refer to the Chapter 5.5 in [32] for more detailed definition of multi-

index stochastic Ito integration notation Iα. Proposition 5.11.1 in [32] gives

an estimate for the Iα,

|E
∑

α∈B(Γk+1)

Iα[φ0,α(X∆t,k
(·) )]0,∆t| ≤ C(L∆t,k)∆tk+2 (3.28)

Since the operator L∆t,k approximates L0, lim∆t→0C(L∆t,k) = C(L). Com-

bining with Lipschitz and linear growth condition, the final weak convergence

order should be C(T )O(∆tk+1) when ∆t is small enough.

Remark 3.3. Figure 3.1 shows the general procedure of our convergence analy-

sis. Our goal is to develop efficient numerical method so that we can reduce the

error in calculating effective diffusivity |DE,num−DE|, which is the dashed line

on the left. Terms (namely DE,∆t, X∆t,k
t (or X∆t

t ), L∆t,k : φ∆t) are introduced

from the BEA and play intermediate roles between the numerical solutions

(shown in the upper row) and the analytic ones (shown in the bottom row).

This framework clearly reveals the main sources of error (i.e. |DE,∆t−DE|).

The foregoing derivation shows that modified flows allow us to approximate

the interpolation of numerical solution with a higher-order accuracy. Hence

the modified flows dominate the error in numerical result. Now we intend to

study the behavior of the modified flows.

Theorem 3.1. For the stochastic differential equation system Eq.(3.9) with a

time independent and separable Hamiltonian H(p, q) Eq.(3.10), the numerical

solution obtained using the symplectic splitting scheme follows an asymptotic

Hamiltonian H∆t(p, q), or equivalently, the first order modified equation (den-

sity function) of the solution is divergence-free. The invariant measure on
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DE,num Xnum
t Lnum : φnum

DE,∆t X∆t,k
t (or X∆t

t ) L∆t,k : φ∆t

DE Xt

Weak Taylor Exp

at t = ∆t

Comparing in cell

T-invariant, O(∆tk)

(Thm.3.3)

∃ path

Truncated operator

C(T )O(∆tk+1)

(Lem.3.1)
Final Error

O(∆tk)

Calculate from

Monte-Carlo path

Homogenization

Approach

Particle Definition

Homogenization Approach

Both Hamiltonian flow

(Thm.3.1)

Figure 3.1: Illustration of backward error analysis for k-th order weak scheme

torus (defined by Rd/Zd, when period is 1) remains trivial. While the numer-

ical solution obtained using the Euler Maruyama scheme does not have these

properties.

Proof. We shall compare the generators of modified equations obtained by

using the symplectic splitting scheme and Euler Maruyama scheme, respec-

tively. More specifically, we compare the operator L1 in Eq.(3.22) obtained

from different methods. In the symplectic splitting scheme, we compute the

weak Taylor expansion at time t = ∆t and get,

L1φ = (A1 −
1

2
L2

0)φ = (
1

2
fg′ +

σ2

4
g′′)φp + (−1

2
f ′g − σ2

4
f ′′)φq + (−σ

2

2
f ′ +

σ2

2
g′)φpq

(3.29)

Hence, the modified flow of X∆t,k can be written asdp = (−g + (1
2
fg′ + σ2

4
g′′)∆t)dt+ σdW1,t + ∆tσ

2
g′dW2,t

dq = (f − (1
2
f ′g + σ2

4
f ′′)∆t)dt+ σdW2,t −∆tσ

2
f ′dW1,t

(3.30)

Similarly, in the Euler Maruyama scheme, we get that

L1φ = (A1 −
1

2
L2

0)φ = (
1

2
fg′ +

σ2

4
g′′)φp + (

1

2
f ′g − σ2

4
f ′′)φq + (−σ

2

2
f ′ +

σ2

2
g′)φpq

(3.31)
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And the associated modified flow can be written asdp = (−g + (1
2
fg′ + σ2

4
g′′)∆t)dt+ σdW1,t + ∆tσ

2
g′dW2,t

dq = (f − (−1
2
f ′g + σ2

4
f ′′)∆t)dt+ σdW2,t −∆tσ

2
f ′dW1,t

(3.32)

Compare the results from Eq.(3.30) and Eq.(3.32), we can easily find that

Eq.(3.30) follows an asymptotic Hamiltonian,

H∆t ≡ H −∆t
(1

2
fg +

σ2

4
(f ′ + g′)

)
, (3.33)

while the flow Eq.(3.32) obtained from the Euler Maruyama scheme does not

have this structure. Furthermore, we introduce notations v1 and d1 to denote

extra terms in the modified flow Eq.(3.30), which are defined as

v1 =

 1
2
fg′ + σ2

4
g′′

−1
2
f ′g − σ2

4
f ′

 , and d1 =

 0 1
2
g′

−1
2
f ′ 0

 (3.34)

Since our numerical method solves a stochastic differential equations deter-

mined by a modified flow Eq.(3.30), the density function of particles u(x, t)

obtained from our method satisfy a modified Fokker-Planck equation given by

ut = −(v + ∆tv1)∇u+D0∇∇ : (I + ∆tD1)u, (3.35)

where D1 =
(
(Id + ∆td1)(Id + ∆td1)T − Td

)
/∆t =

 ∆t
4

(g′)2 1
2
(g′ − f ′)

1
2
(g′ − f ′) ∆t

4
(f ′)2


and we have used the condition ∇ · v1 = 0 to get ∇

(
(v + ∆tv1)u

)
= (v +

∆tv1)∇u. The inner product between matrices is denoted byA : B = tr(ATB) =∑
i,j aijbij. It follows that ∆ = ∇∇ : I and ∇∇ : D1 are defined accord-

ingly. Then we can check that Eq.(3.35) admits trivial invariant measure

u0(x, t) ≡ 1.

We can repeat a similar calculation and generalize the result in Theorem

3.1 to a general time dependant and separable Hamiltonian. Therefore, we

obtain the result as follows,

Corollary 3.1. For the stochastic differential equation system Eq.(3.9) with a

time dependent and separable Hamiltonian H Eq.(3.10), the numerical solution

obtained using the symplectic splitting scheme follows an asymptotic Hamilto-

nian H∆t, or equivalently, the first order modified equation (density function)
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3.2. Convergence analysis

of the solution is divergence-free. The invariant measure on torus (defined

by Rd/Zd, when period is 1) remains trivial.. While the numerical solution

obtained using the Euler Maruyama scheme does not have these properties.

Proof. We repeat the same computation as we did in Theorem 3.1. In the

symplectic splitting scheme, we find that the corresponding modified flow can

be written asdp =
(
− g + (1

2
fg′ + σ2

4
g′′ + 1

2
gt)∆t

)
dt+ σdW1,t + ∆tσ

2
g′dW2,t

dq =
(
f − (1

2
f ′g + σ2

4
f ′′ + 1

2
ft)∆t

)
dt+ σdW2,t −∆tσ

2
f ′dW1,t

(3.36)

The rest part is similar with Theorem 3.1.

Before we end this subsection, we use an example to demonstrate our main

idea. We consider the flow driven by the Taylor-Green velocity field,dp = − cos(q) sin(p)dt+ σdW1,t,

dq = sin(q) cos(p)dt+ σdW2,t.

(3.37)

By introducing two variables P = p+ q and Q = p− q, we know the dynamic

system Eq.(3.37) possesses a separable Hamiltonian, H = − cosP − cosQ and

the system can be expressed bydP = − sinQ+
√

2σdη1,

dQ = sinP +
√

2σdη2,

(3.38)

where η1 and η2 are two independent Brownian motions that are linear com-

binations of W1,t and W2,t. Substituting into Eq.(3.33) and Eq.(3.30), we get,

H∆t = H −∆t
(1

2
sinP sinQ+

σ2

2
(cosP + cosQ)

)
, (3.39)

and dP = −∂H∆t

∂Q
dt+

√
2σdη1 + ∆t σ√

2
cosQdη2,

dQ = ∂H∆t

∂P
dt+

√
2σdη2 + ∆t σ√

2
cosPdη1.

(3.40)

Up to now, the new integrator Eq.(3.1) is shown to preserve structure of origi-

nal Hamiltonian system Eq.(3.9) asymptotically at O(∆t). In next subsection,

we study effective diffusivity as a behavior of the structure.
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3.2. Convergence analysis

3.2.3 Error analysis for computing the effective diffu-

sivity

Recalling Eq.(2.29), only distribution of the process is needed, so Eulerian

framework is sufficient to get an error estimate. For sake of comparison, we

re-write the effective diffusivity formula Eq.(2.23) for Eq.(3.1) as,

DE = D0〈(Id +∇w)(Id +∇w)T 〉p. (3.41)

where D0 = σ2/2, which is globally used in context, 〈·〉p denotes the spatial

average (integration in Td), and cell problem w satisfies,

wt + (v · ∇w) +D0∆w = −v. (3.42)

, with the velocity filed v = (−g, f)T . To study effective diffusivity in Eq.(3.35),

we turn to the Section 3.10 of [3], where an exact formula for DE in a non-

constant diffusion case is provided. Let w∆t ≡ w∆t(t, x) denote the periodic

solution of the cell problem that is corresponding to the modified Fokker-

Planck equation Eq.(3.35), i.e., w∆t satisfies the following equation

w∆t
t = −(v + ∆tv1) · ∇w∆t −D0∇∇ : (I + ∆tD1)w∆t − (v + ∆tv1). (3.43)

We introduce the operators P0w
∆t ≡ −v∇w∆t−σ2

2
∆w∆t and P1w

∆t ≡ −v1∇w∆t−
σ2

2
∇∇ : D1w

∆t to simplify Eq.(3.43) as

w∆t
t = (P0 + ∆tP1)w∆t − (v + ∆tv1). (3.44)

Now by Theorem 3.1 and Corollary 3.1, Eq.(3.30) admits trivial invariant

measure, so formula for the effective diffusivity tensor turns into,

DE,∆t = D0

〈
(Id +∇w∆t)(Id + ∆tD1)(Id +∇w∆t)T

〉
p
. (3.45)

The modified cell problem (3.43) and the corresponding effective diffusivity

tensor Eq.(3.45) enable us to analyse the error in our new method.

Lemma 3.2. Eq.(3.43) has a unique solution if the condition
∫
UT
w∆tdxdt = 0

holds, where UT = [0, T ]×U is the space-time domain for the periodic function

w.
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3.2. Convergence analysis

Proof. We first notice that when ∆t � D0, the operator (P0 + ∆tP1) is uni-

formly elliptic. The space average of the source term −(v+∆tv1) vanishes. By

the Fredholm alternative, Eq.(3.44) has nontrivial solutions if −(v+∆tv1) 6≡ 0.

Then, using the maximum principle, we get the conclusion that the solution

w∆t to Eq.(3.43) is unique if the condition
∫
UT
w∆tdxdt = 0 is satisfied.

Now we derive regularity estimate in this Poincaré map problem (3.43).

Theorem 3.2. Suppose w = w(t, x) is a space-time periodic solution over the

domain UT = [0, T ]× U , which satisfies

wt + (v · ∇w) +D : ∇∇w = S, (t, x) ∈ UT = [0, T ]× U, (3.46)

where ∇·v = 0, D is symmetric and its eigen values are between [D−, D+], ∀(x, t)

, S = S(t, x) is the source term, which vanishes in average at any time t.

Then, we have the regularity estimate for w as |∇w|L2(UT ) ≤ C|S|L2(UT ) where

the constant C depends only on the length of the physical domain U and the

parameter D.

Proof. We multiply the equation Eq.(3.46) by wT and integrate in U∫
U

(wTwt + wTv∇w + wTD : ∇∇w)dx =

∫
U

wTSdx (3.47)

We shall notice that, ∫
U

wTwtdx =
d

dt

∫
U

|w|2dx,∫
U

wTv∇wdx = −
∫
U

wTv∇wdx = 0,∫
U

−wTD : ∇∇wdx =

∫
U

∇wTD∇wdx,

where we have used the condition ∇·v = 0. Then, we integrate Eq.(3.47) over

the time period [0, T ] and the periodic condition of w implies∫
UT

∇wTD∇wdx =

∫
UT

wTSdxdt (3.48)

Let w̄(t) denote the space average of w at time t. Since S vanishes in space

average at any time t, we have∫
UT

w̄TSdxdt = 0. (3.49)
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3.2. Convergence analysis

In addition, we get the equality( ∫
UT

∇wTD∇wdx
)2

=
( ∫

UT

(wT − w̄T )Sdxdt
)2

(3.50)

Applying Poincare inequality on the right hand side and Cauchy-Schwartz on

the left, we obtain the estimate∫
UT

∇wTD∇wdx ≥ D−

∫
UT

|∇w|2dxdt ≥
∫

[0,T ]

CU

∫
U

|w−w̄|2dxdt =

∫
UT

|w−w̄|2dxdt

(3.51)

(

∫
UT

(wT − w̄T )Sdxdt)2 ≤
∫
UT

|S|2dxdt
∫
UT

|w − w̄|2dxdt (3.52)

Combining the inequalities Eq.(3.51) and Eq.(3.52), we finally get the regular-

ity estimate in L2 norm.

|∇w|L2(UT ) ≤
C(U)

D−
|S|L2(UT ). (3.53)

Given the regularity estimate of w∆t in (3.43), we can easily get estimate

for the error between solutions to Eq.(3.42) and Eq.(3.43). We summarize the

main result into the following theorem.

Theorem 3.3. Let w(x, t) and w∆t(x, t) be the solution to the Eq.(3.42) and

Eq.(3.43), respectively. We have the estimate |∇w−∇w∆t|L2(UT ) ≤ CU
∆t
D0
|Se|L2(UT ),

where Se = P1w
∆t − v1 is the source term.

Proof. Let e ≡ e(x, t) = w(x, t) − w∆t(x, t) denote the error. One can easily

find that e is a space-time periodic function over UT = [0, T ]×U and satisfies

the following equation

et + (v · ∇e) +D0∆e = (∆t)Se, (3.54)

where the source term Se is defined above. So we directly apply the regularity

estimate for the parabolic-type equation obtained in Thm.3.2 and obtain,

|∇e|L2(UT ) ≤ C(U)
∆t

D0

|P1w
∆t − v1|L2(UT ) (3.55)

Again when ∆t� D0, the operator ∂
∂t

+(P0+∆tP1) is uniformly parabolic and

the diffusion coefficients D = D0 + ∆tD1 is positive and uniformly bounded
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3.2. Convergence analysis

below (i.e.D− → D0) for any ∆t small enough. By regularity estimate of

parabolic equation (a concrete estimate may comes from [15]), we can get

w∆t, ∇w∆t and ∇∇ : w∆t are uniformly bounded in L2(UT ) for any ∆t small

enough, hence,

|P1w
∆t − v1|L2(UT ) = |(−v1∇−D0∇∇ : D1)w∆t − v1|L2(UT ) ≤ C, (3.56)

where the constant C is independent of ∆t.

Finally, based on the error estimate for the solutions to the cell problems

(3.42) and (3.43), we are able to get the error analysis for the effective diffu-

sivity.

Remark 3.4. From Eq.(3.55), we shall state, a proper setting in calculating

effective diffusivity should be

∆t ∼ D0 =
σ2

2
. (3.57)

Corollary 3.2. Let DE and DE,∆t denote the effective diffusivity tensor com-

puted by Eq.(3.41) and Eq.(3.45). Then, the error of the effective diffusivity

tensor can be bounded by

|DE,∆t −DE| ≤ C∆t, (3.58)

where the constant C does not depend on time T .

Proof. Recalling Eq.(3.45), DE,∆t = D0

〈
(Id+∇w∆t)(Id+∆tD1)(Id+∇w∆t)T

〉
p

where D1 =

 ∆t
4

(g′)2 1
2
(g′ − f ′)

1
2
(g′ − f ′) ∆t

4
(f ′)2

. We shall see the fact that 〈1
2
(g′ −

f ′)〉p = 0, 〈∇w∆t〉p = 0. Hence,

DE,∆t −DE =D0(〈∇w∆t∇w∆t,T −∇w∇wT 〉p +O(∆t2)) (3.59)

=D0

(
(∇w∆t −∇w)∇wT +∇w(∇w∆t −∇w)T (3.60)

+ (∇w∆t −∇w)(∇w∆t −∇w)T +O(∆t2)
)
. (3.61)

Then considering Thm.3.2, and we can find that the order of the error in

Eq.(3.58) is O(∆t).
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3.3. Numerical results

Theorem 3.4. Solution of Eq.(3.9) is denoted as Xt and adaptive interpolated

process of Eq.(3.6) as Xnum
t . To calculate effective diffusivity of Xnum

t which

both start at x, we define D̃E,num(x, t) = E[
(Xnum

t −X0)⊗(Xnum
t −X0)

2t
|X0 = x] for

0 < t ≤ T .

sup
x
|D̃E,num(x, t)−DE| ≤ C∆t+ C(T )∆t2 (3.62)

Proof. Let D̃E,∆t(x, t) = E[
(X∆t

t −X∆t
0 )⊗(X∆t

t −X∆t
0 )

2t
|X∆t

0 = x]. For any ε >

0. We assume φ0(x) =
√
ε+ (x−X0)T (x−X0) in Lem.3.1, we see that

|
√
D̃E,num(x, t) −

√
D̃E,∆t(x, t)| ≤ C(T )∆t2. By homogenization theory (like

[3], [43]), we shall see limt→∞ |D̃E,∆t(x, t)−DE,∆t| = 0. Finally, Col.3.2 states

|DE,∆t −DE| ≤ C∆t2. Eq.(3.62) is the result of triangle inequality.

Remark 3.5. We shall see that in calculating effective diffusivity, we approx-

imate DE by D̃E,num in which taking expectation corresponds to simulation

ignoring error of Monte-Carlo.

Remark 3.6. If a long-time behavior of a flow (i.e. effective diffusivity) can

be approximated by a truncated flow of the numerical method, the error in

approximating such behavior may be dominant by the truncated flow which can

be studied analytically. In case of Thm.3.4, general error analysis (like in [32])

will state |D̃E,num(x, t) − DE| ≤ C(T )∆t where C(T ) grows exponentially as

T →∞.

3.3 Numerical results

In this section, we shall apply our methods to investigate the behaviors

of several time-dependent chaotic and stochastic flows. We are interested in

understanding the mechanisms of the diffusion enhancement, the existence

of residual diffusivity, highlighting the influence of Lagrangian chaos on flow

transport, and long-time performance of different numerical methods.
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3.3. Numerical results

3.3.1 Chaotic cellular flow with oscillating vortices

For the first example, we consider the passive tracer model in which the

velocity field is given by a chaotic cellular flow with oscillating vortices. Specifi-

cally, the flow is generated by a Hamiltonian defined asH(t, p, q) = − 1
k

cos(kp+

B sin(ωt)) sin(kq). The motion of a particle moving in this chaotic cellular flow

is described by the SDE,dp = sin(kp+B sin(ωt)) cos(kq)dt+ σdW1,t,

dq = − cos(kp+B sin(ωt)) sin(kq)dt+ σdW2,t,

(3.63)

with initial data (p0, q0). The behavior of Eq.(3.63) with σ = 0 was intensively

studied in [9], which is a two-dimensional incompressible flow representing a

lattice of oscillating vortices or roll cells. Moreover, when B = 0 the flow

in Eq.(3.63) turns into the classic Taylor-Green velocity field. In this setting

real fluid elements follow trajectories that are level curves of its Hamiltonian.

When B 6= 0, the trajectories of the passive tracers differ from the streamlines,

due to the oscillating vortex in the flow.

When σ > 0 the dynamics of the Eq.(3.63) will exhibit more structures,

which is an interesting model problem to test the performance of our method.

We point out that when B 6= 0 and σ > 0, the long-time large-scale behavior

of the particle model of Eq.(3.63) has been studied by many researchers, for

example in [16, 44]. It shows that the asymptotic behaviors of effective diffu-

sivity DE ∼ σI2 (,or equivalently DE ∼
√

2D0I2), which means that for this

type of flow there does not exist residual diffusivity.

In our numerical experiments, we choose k = 2π, ω = π, (p0, q0) = (0, 0) in

the SDE Eq.(3.63). The time step is ∆t = 10−2 and the final computational

time is T = 104. We consider different B to study the behaviours of effective

diffusivity in vanishing viscosity (i.e. σ → 0). We compare the numerical

obtained using the sympletic splitting scheme and Euler-Maruyama scheme.

In our comparison, we use the same Monte Carlo samples to discretize the

Brownian motions dW1,t and dW2,t. The sample number is Nmc = 5000.
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3.3. Numerical results

In Figure 3.2, we show the numerical results of effective diffusivity DE
11

obtained using different methods and parameters. Left part of the figure shows

the results for Taylor-Green velocity field (B = 0). One can see that the

Euler-Maruyama scheme fails to achieve the theoretical analysis for DE, i.e.,

DE ∼ σI2, while the result obtained using our sympletic splitting scheme

agrees with the theory well. Right part of the figure shows the results for

B = 2.72. One again finds that the behaviors of the Euler-Maruyama scheme

and our scheme are different.

To further compare the performance of the Euler-Maruyama scheme and

our method, we repeat the same experiment with k = 2π, ω = π, (p0, q0) =

(0, 0) and σ = 10−2 in Eq.(3.63), but try different time step ∆t with B = 0

and B = 2.72 correspondingly. In Figure 3.3, we find that symplectic scheme

can achieve very accurate results even using a relatively larger time step, while

the Euler-Maruyama scheme cannot give the right answer even using a very

smallest time step. As a result of our analysis 3.2 and Eq.(3.63), we can

say that the numerical result for DE
11 has converged to the analytical result.

Therefore, we conjecture that the time dependent cellular flow we studied in

Eq.(3.63) with B = 2.72, we still have DE ∼ σI2. More theoretic analysis of

this flow will be reported in our future work.
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Figure 3.2: Numerical result for DE
11, along with different σ

Remark 3.7. We also tested a time-dependent Taylor-Green velocity field,

which is generated by the Hamiltonian defined as

H(t, p, q) =
1

k

(
1 +B sin(ωt)

)
cos(kp) sin(kq). (3.64)
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Figure 3.3: Numerical result for DE
11, along with different ∆t

This field can be used to model particle motion in the ocean and in the at-

mosphere since it contains both vortices (convection cells) and linear upris-

ing/sinking regions. Our numerical results indicate that the asymptotic be-

haviours of effective diffusivity DE ∼ σI2. Namely, there does not exist resid-

ual diffusivity for this time-dependent Taylor-Green velocity field.

3.3.2 Investigating residual diffusivity

We now turn to another chaotic cellular flow which is generated from a

Hamiltonian defined as H(t, p, q) =
(

sin(p)−sin(q)
)
+θ cos(t)

(
cos(q)−cos(p)

)
.

Then the particle path satisfies the following SDE,dp =
(

cos(q) + θ cos(t) sin(q)
)
dt+ σdW1,t,

dq =
(

cos(p) + θ cos(t) sin(p)
)
dt+ σdW2,t.

(3.65)

The flow in Eq.(3.65) is fully chaotic (well-mixed at θ = 1). The first term

of the velocity field
(

cos(q), cos(p)
)

is a steady cellular flow, but the second

term of the velocity field θ cos(t)
(

sin(q), sin(p)
)

is a time periodic perturbation

that introduces an increasing amount of disorder in the flow trajectories as θ

increases.

The flow in Eq.(3.65) has served as a model of chaotic advection for Rayleigh-

Bénard experiment [25]. This type of flow has been investigated numerically

in [36] by solving the cell problem Eq.(3.42). It was found that DE
11 = O(1)
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3.3. Numerical results

as D0 ↓ 0, which implies the existence of the residual diffusivity. However,

the solutions of the advection-diffusion equation Eq.(3.42) develop sharp gra-

dients as D0 ↓ 0 and demand a large amount of computational costs. We

shall show that our numerical method gives comparable results with far less

computational costs.

In our numerical experiments, we choose time step ∆t = 5 × 10−2 and

final time T = 5 × 103 in our symplectic scheme as smaller values of ∆t and

larger values of T do not alter the results significantly. We use Nmc = 5000

independent Monte Carlo sample paths to discretize the Brownian motions

dW1 and dW2.

In Tab.3.1, we show the numerical results of DE
11 for different D0 and θ. We

also show the results in Fig.3.4. We observed a nonmonotone dependence of

DE
11 vs. θ in the small D0 regime, though the overall trend is that DE

11 increases

with the amount of chaos in the flows. Our numerical results again imply the

existence of residual diffusivity for this type of chaotic flow. As suggested

in our previous numerical investigation, the Euler-Maruyama scheme needs a

much finer time step to compute the residual diffusivity and the numerical

results can be polluted by the diffusion of the scheme. Therefore, we do not

test the Euler-Maruyama scheme in this experiment.

3.3.3 Investigating stochastic flows

We are also interested in investigating the existence of the residual dif-

fusivity for stochastic flows. The homogenization of time-dependent random

flows had been studied in literatures. Under certain integrability condition, it

is proved that the effective diffusivity exists for the long-time large scale be-

havior of the solutions [18, 35]. However, there are few numerical experiments

to investigate effective diffusivity quantitatively We shall use our symplectic

splitting scheme to compute the effective diffusivity for stochastic flows. More

theoretical study will be reported in Chapter 6.
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3.3. Numerical results

θ D0 = 10−6 D0 = 10−5 D0 = 10−4 D0 = 10−3 D0 = 10−2 D0 = 10−1

0.1 0.11155 0.08405 0.06883 0.07276 0.15795 0.50409

0.2 0.17678 0.16109 0.15918 0.16901 0.21342 0.54775

0.3 1.18786 0.90120 0.52176 0.35692 0.31484 0.55054

0.4 0.45719 0.45312 0.36819 0.38533 0.42212 0.53841

0.5 0.33937 0.35246 0.32603 0.36147 0.42486 0.64521

0.6 0.26844 0.24674 0.23670 0.25699 0.39448 0.70488

0.7 0.17402 0.16913 0.17664 0.21547 0.41394 0.75420

0.8 0.67800 0.60529 0.60658 0.51621 0.53321 0.79679

0.9 1.35703 1.36383 1.37339 1.08412 0.91342 0.90877

Table 3.1: Numerical results of DE
11 by the symplectic splitting scheme.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
E 11

D
0

=10 -6

D
0

=10 -5

D
0

=10 -4

D
0

=10 -3

D
0

=10 -2

D
0

=10 -1

Figure 3.4: The y results. DE
11 vs. θ for the fully chaotic flow defined in

Eq.(3.65).
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3.3. Numerical results

The stochastic flow is constructed from the fully chaotic flow in Eq.(3.65),

where the time periodic function cos(t) is replaced by an Ornstein-Uhlenbeck

(OU) process ηt [52]. The OU process satisfies,

dηt = θou(µou − ηt)dt+ σoudWt. (3.66)

where θou > 0, µou, and σou > 0 are parameters and dWt denotes a Wiener

process. Specifically, θou controls the speed of reversion, µou is the long term

mean level, and σou is the volatility or diffusion strength. In our numerical

experiments, we choose µou = 0, θou = 1, and σou = 1, so that the OU

process has zero mean and the stationary variance is σ2
ou

2θou
= 1

2
. We choose the

parameters in the OU process in such as way that its qualitative behavior is

the same as cos(t). The particle path satisfies the following SDE,dp = (cos(q) + θ ηt sin(q))dt+ σdW 1
t

dq = (cos(p) + θ ηt sin(p))dt+ σdW 2
t .

(3.67)

where the Brownian motions dW 1
t and dW 2

t are independent from the one used

in the definition of the OU process Eq.(3.66).

Since OU process has ergodic property, we choose a small amount of sam-

ple paths, say nou = 40, and final computational time T = 5× 103 to compute

the effective diffusivity. In Tab.3.2, we show the numerical results of DE
11 for

different D0 and θ, where each DE
11 is the average values obtained from the

nou paths. In Fig.3.5, we show the results corresponding to Tab.3.2. We ob-

served a nonmonotone dependence of DE
11 vs θ in time periodic cellular. Our

numerical results again imply the existence of residual diffusivity for this type

of stochastic flow. We observe however that the non-monotonic dependence

in θ disappears. Namely, the residual diffusivity is an increasing function of θ.

Such phenomenon is due to the absence of resonance in stochastic flows. Fur-

thermore, we show the ergodicity results of the effective diffusivity in Fig.3.6.

In this test, we choose the parameters θ = 0.1, D0 = 10−2 and compute the ef-

fective diffusivity along 2000 OU path. We show the histogram of DE(ωOU) at

T = 100, T = 200, T = 500, T = 5000, and T = 20000 respectively. This figure

illustrates two facts: firstly, as the computational time become long enough the
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3.3. Numerical results

histogram appears to converge to a limiting distribution. The limiting distri-

bution has much smaller variance and is centered closer to 0.156084. Secondly,

in the Tab.3.1 we show the residual diffusivity obtained from the fully chaotic

(well-mixed) flow. When the parameters θ = 0.1, D0 = 10−2, the correspond-

ing residual diffusivity is DE
11 = 0.157947. Thus, the chaotic and stochastic

flows may share some similar mechanism in long time behavior. More theoretic

and numerical investigations will be studied in our future work.

θ D0 = 10−6 D0 = 10−5 D0 = 10−4 D0 = 10−3 D0 = 10−2 D0 = 10−1

0.1 0.03644 0.03782 0.04265 0.06441 0.15608 0.48565

0.2 0.07070 0.07410 0.07553 0.09442 0.17228 0.49187

0.3 0.10624 0.10499 0.11215 0.12387 0.19542 0.49633

0.4 0.13734 0.14170 0.14579 0.15488 0.22119 0.51338

0.5 0.17133 0.17371 0.17636 0.18787 0.25286 0.52213

0.6 0.19719 0.20051 0.20510 0.22081 0.27269 0.53947

0.7 0.23278 0.23147 0.24067 0.24835 0.31460 0.56399

0.8 0.25992 0.25548 0.26805 0.28024 0.33211 0.58981

0.9 0.28671 0.29156 0.29021 0.29478 0.36550 0.60534

Table 3.2: Numerical results of DE
11 by the symplectic splitting scheme. The

flow is defined by OU process.

3.3.4 Behavior of the long-time integration

Theorem 3.1 proves that the symplectic splitting scheme preserves the

asymptotic Hamiltonian structure that enables us to compute the stable long-

time behaviour of the effective diffusivity of chaotic and stochastic flows. We

now keep using the flow Eq.(3.65) and compute a much longer time solution

with final time T = 5× 105.

In Figure 3.7, we plot the effective diffusivity DE
11 as a function of time ob-

tained using different methods and parameters. The top two lines correspond

to the Euler-Maruyama method for σ = 10−5 and σ = 10−6, while the bottom
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Figure 3.5: The residual diffusivity results. DE
11 vs. θ for the Stochastic flow

driven by an OU process defined in Eq.(3.67).
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Figure 3.6: Histogram of the residual diffusivity results. DE
11 for the Stochas-

tic flow driven by an OU process defined in Eq.(3.67) that are computed at

different final times.
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Figure 3.7: Behavior of <(x1(t)−x1(0))2>
2t

as a function of time for two different

methods.

two lines correspond to the symplectic splitting method. It is clear that results

obtained from symplectic splitting method converge to a more stable value. A

probable explanation is that modified flow of Euler method is not divergence-

free while the solution obtained using the symplectic splitting scheme follows

an asymptotic Hamiltonian. This is proved in our Theorem 3.1.

Another evidence comes from Figure 3.8, where we plot the phase plane for

two different numerical methods. The realization of the noise is the same and

we integrated up to time T = 103 with time step ∆t = 10−2. We choose the

parameters θ = 0.1 and D0 = 10−5. From these results, we find that the paths

oscillate near a line with slope 1. It is clear that the behavior of the particle

is drastically different. In the case of Euler-Maruyama method the particle

appears to be much more diffusive than in the case of the symplectic splitting

scheme.

In Figure 3.9, we show how the modified equation approximate the original

problem, where we consider the chaotic cellular flow (3.65). More specifically,

we plot the effective diffusivity 2(DE
11 + DE

22) as of function of time obtained

using different methods and we choose the parameter θ = 0.1 and D0 = 10−5.

From our numerical results, we find that the effective diffusivity obtained using
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Figure 3.8: Phase plane for the two different methods.

our method with time step dt = 0.05 agrees very well that one obtained from

solving the modified equation using the Euler-Maruyama method with time

step dt = 0.002. Namely, we approximately achieve a 25X speedup over the

Euler-Maruyama method. The Euler method with dt = 0.05 also generates

results that agrees with its corresponding modified equation with finer time

step. But the effective diffusivity converges to the wrong result.
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Figure 3.9: Behavior of <(x1(t)−x1(0))2>+<(x2(t)−x2(0))2>
t

for two different methods.
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Chapter 4

Sharp and Uniform in Time

Error Analysis in

Time-Independent Flows

4.1 Symplectic stochastic integrators

In this section, we will first revisit the scheme proposed in Chapter 3 and

consider it in probabilistic viewpoint. To demonstrate the main idea, we

first construct a symplectic stochastic integrator for a two-dimensional pas-

sive tracer model with a separable Hamiltonian. Then we will generalize our

integrator to multi-dimension cases in Section 4.2.5.

4.1.1 Derivation of numerical integrators

Let X = (p, q) denote the position of the particle, then the passive tracer

model can be written asdp = −f(q)dt+ σW1,t, p(0) = p0,

dq = g(p)dt+ σW2,t, q(0) = q0,

(4.1)
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4.1. Symplectic stochastic integrators

where Wi,t are independent Brownian motions and we have assumed that there

exists a separable Hamiltonian functionH(p, q) = F (q)+G(p) such that f(q) =

Hq(p, q), g(p) = Hp(p, q), and H(p, q) is a periodic function on R2 with period

1.

In Chapter 3, we proposed a structure-preserving scheme based on a Lie-

Trotter splitting idea to solve the SDE (4.1). Specifically, we split the Eq.(4.1)

into a deterministic subproblem,dp = −f(q)dt,

dq = g(p)dt,

(4.2)

that is solved using a symplectic-preserving scheme (the symplectic Euler

scheme for deterministic equations) and a stochastic subproblem,dp = σW1,t,

dq = σW2,t,

(4.3)

that is solved using the Euler-Maruyama scheme [42]. Eventually, the one step

integrator of Eq.(4.1) is given by,pn+1 = pn − f(qn)∆t+ σ
√

∆tNp
n,

qn+1 = qn + g
(
pn − f(qn)∆t

)
∆t+ σ

√
∆tN q

n,

(4.4)

where Np
n, N

q
n ∼ N (0, 1) are i.i.d. normal random variables in direction of

p and q at step n. We denote the stochastic process generated by (4.4) as

Xn = (pn, qn), which is the numerical approximation to the exact solution

X(n∆t) to the SDE (4.1).

When the Hamiltonian system contains additive temporal noise, the noise

itself is considered to be symplectic path-wisely [41]. We state that the scheme

(4.4) is stochastic symplectic-preserving since it preserves symplecticity as a

composition of symplectic transforms and it converges as time-step turns to

zero. Though there are several prior works on developing symplectic-preserving

scheme for solving ODEs and PDEs (see [1, 27, 28] and references therein), the

novelty of our work is the rigorous theory and sharp estimate on the numerical

error in computing the effective diffusivity.
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4.1. Symplectic stochastic integrators

Remark 4.1. In general, the second-order Strang splitting [51] is more fre-

quently adopted to solve ODEs and PDEs. The only difference between the

Strang splitting method and the Lie-Trotter splitting method is that the first

and last steps are modified by half of the time-step ∆t. For the SDEs, how-

ever, the dominant source of error comes from the random subproblem (4.3).

Thus, it is not necessary to implement the Strang splitting scheme.

4.1.2 The backward Kolmogorov equation and related

results

For the convenience of the reader, we first give a brief review of the theoret-

ical results for the scheme (4.4) obtained in Chapter 3 and references therein.

We first define the backward Kolmogorov equation associated with the Eq.(4.1)

as

ut = Lu, u(x, 0) = u0(x), (4.5)

where the generator L (associated with the Markov process in Eq. (4.1)) is

given by

L = −f∂q + g∂p +
1

2
σ2∂2

p +
1

2
σ2∂2

q . (4.6)

Recall that the solution u(x, t) to the Eq.(4.5) satisfies u(x, t) = E(φ(Xt)|X0 =

x), where Xt = (p(t), q(t))T is the solution to Eq.(4.1) and φ is a smooth

function in R2.

Similarly, we can study the flow generated by the symplectic splitting

scheme (4.4). Recalling the splitting method during the derivation of the

scheme in Section 4.1.1, we define L1 = −f∂p, L2 = g∂q and L3 = σ2

2
(∂pp+∂qq).

Starting from u(·, 0), we compute
∂tu

1 = L1u
1, u1(·, 0) = u(·, 0),

∂tu
2 = L2u

2, u2(·, 0) = u1(·,∆t),

∂tu
3 = L3u

3, u3(·, 0) = u2(·,∆t).

(4.7)
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4.1. Symplectic stochastic integrators

Then u3(·,∆t) will be the flow at time t = ∆t generated by our scheme and

it approximates the solution u(·,∆t) to the Eq.(4.5). It is also worth men-

tioning that, u2(·,∆t) is the exact flow generated by deterministic symplectic

Euler scheme in solving Eq.(4.2). Later on, we repeat this process to com-

pute the flow equations of our scheme at other time steps, which approximate

u(·, n∆t), n = 2, 3, ....

To analyze the error between the flow operator in Eq.(4.5) and the com-

posited operator in Eq.(4.7), we shall resort to the Baker-Campbell-Hausdorff

(BCH) formula, which is widely used in non-commutative algebra [26]. For

example, in the martix theory,

exp(At) exp(Bt) = exp

(
t(A+B)+t2

[A,B]

2
+
t3

12

([
A, [A,B]

]
+
[
B, [B,A]

])
+· · ·

)
,

(4.8)

where t is a scalar, A and B are two square matrices with the same size, [, ] is

the Lie-Bracket, and the remaining terms on the right hand side are all nested

Lie-brackets.

In our analysis, we replace the matrices in Eq.(4.8) by PDE operators and

the BCH formula yields some insights into the particular structure of splitting

errors. Let I∆t denote the composited flow operator associated with Eq.(4.7),

i.e.,

I∆tu(·, 0) := exp(∆tL3) exp(∆tL2) exp(∆tL1)u(·, 0). (4.9)

Recall that the exact solution to the Eq.(4.5) at time t = ∆t can be represented

as

u(·,∆t) = exp(∆tL)u(·, 0) = exp(∆t(L1 + L2 + L3))u(·, 0). (4.10)

Therefore, we can apply the BCH formula to analyze the error between the

original flow and the approximated flow. Moreover, we find that computing

the k-th order modified equation associated with Eq.(4.1) in BEA is equiva-

lent to computing the terms of BCH formula up to order (∆t)k in the Eq.(4.9).

To show that the solution generated by Eq.(4.4) follows a perturbed Hamil-

tonian system (with divergence free velocity and additive noise) at any or-

der p, we only need to consider the (p + 1)-nested Lie bracket consists of
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4.2. Convergence analysis

{−f∂q, g∂p, ∂pp + ∂qq} and we can easily see that they will not generate non-

divergence free field.

In Chapter 3, we proved that for the SDE (4.1) with a time-dependent and

separable Hamiltonian H(p, q, t) = F (p, t) + G(q, t), the numerical solution

obtained using the symplectic-preserving scheme (4.4) follows an asymptotic

Hamiltonian H∆t(p, q, t), which is a first-order approximation to H(p, q, t).

Equivalently, the velocity field in the first-order modified backward Kolmogorov

equation is divergence-free and the invariant measure on the torus (defined by

Rd/Zd, when period is 1) remains uniform, which is also known as the Haar

measure. However, the numerical solution obtained using the Euler-Maruyama

scheme does not have these properties.

Moreover, given any explicit splitting scheme for deterministic systems, by

adding additive noise we shall have a similar form of flow propagation. And

we shall see in later proof that, such operator formulation is very effective in

analyzing the order of convergence and volume-preserving property.

4.2 Convergence analysis

We shall prove the convergence rate of our symplectic stochastic integrators

in computing effective diffusivity based on a probabilistic approach, which

allows us to get rid of the exponential growth factor in our error estimate.

4.2.1 Convergence to an invariant measure

The numerical method to compute effective diffusivity of a passive tracer

model is closely related to study the limit of a sequence generated by the

stochastic integrators. Therefore, we can apply the results from ergodic theory

to study the convergence of the solution. The following result is fundamental

for the proof of our convergence analysis.

Proposition 4.1. On the torus space Ỹ = Rd/Zd, let I∗∆t denote the transform
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4.2. Convergence analysis

of the density function during ∆t using the numerical scheme (4.4). Let I∆t

denote the adjoint operator (i.e., the flow operator) of I∗∆t in the space of B(Ỹ ),

which is the set of bounded measurable functions on Ỹ . Then I∆t is a compact

operator from B(Ỹ ) to itself. And there exists one and only one invariant

probability measure on (Ỹ ,Σ), denoted as π, satisfying,

sup
x∈Ỹ

∣∣∣(In∆tφ)(x)−
∫
φ(x′)π(dx′)

∣∣∣ ≤ K||φ||L∞e−ρn, ∀φ ∈ B(Ỹ ), (4.11)

where ρ > 0, K > 0 are independent of φ(·).

Proof. We shall verify that the transition kernel associated with the numerical

scheme (4.4) satisfies the assumptions of Prop.2.3. First in the Rn space, the

integration process associated with the numerical scheme can be expressed as

a Markov process with the transition kernel,

K∆t

(
(p, q), (P,Q)

)
=

1

2πσ2∆t
exp

(
−

(
P − p+ f(q)∆t

)2

+
(
Q− q − g

(
p− f(q)∆t

)
∆t
)2

2σ2∆t

)
,

(4.12)

where (p, q) is the current solution and (P,Q) is the solution obtained by

applying the scheme on (p, q) with time step ∆t.

Then using the periodicity of f(x) and g(x), we extend Eq.(4.12) directly

to the torus space Ỹ as

K̃∆t

(
(p, q), (P,Q)

)
=
∑
i,j∈Z

1

2πσ2∆t
·

exp

(
−

(
P + i− p+ f(q)∆t

)2

+
(
Q+ j − q − g

(
p− f(q)∆t

)
∆t
)2

2σ2∆t

)
.

(4.13)

One can see that if 0 < ∆t� 1, then K̃ is smooth and is essentially bounded

above zero, i.e., essn K̃ > 0, ∀
(
(p, q), (P,Q)

)
∈ Ỹ × Ỹ . Thus, the operator

I∆t is compact since it is an integral operator with a smooth kernel. Then

applying the Theorem 3.3.1 in [4], we prove the assertion of the Proposition

4.1.
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Now, we state a corollary that is a simple conclusion of exponential decay

property proved in Proposition 4.1, which will be useful in the proof of main

results.

Corollary 4.1. Given that the assumptions in Proposition 4.1 are satisfied

and φ ∈ B(Ỹ ), we have

lim
n→∞

1

n

n∑
i=1

Eφ(Xi) =

∫
Ỹ

φπ(dx). (4.14)

Before we close this subsection, we prove a convergence result for the inverse

of operator sequences, which will be useful in our analysis.

Proposition 4.2. Let X, Y denote two Banach spaces. Assume Tn, T are

bounded linear operators from X to Y , satisfying limn→∞ ||Tn − T ||B(X,Y ) = 0,

and T−1 ∈ B(Y,X). Given f ∈ Y , if T−1
n f , n = 1, 2, ... uniquely exist, then

we have a convergence estimate as follows,

lim
n→∞

||(T−1
n − T−1)f || = 0 (4.15)

Proof. After some simple calculations, we get

T−1
n − T−1 = T−1(T − Tn)T−1

n

= T−1(T − Tn)T−1 + T−1(T − Tn)(T−1
n − T−1). (4.16)

Now applying T−1
n − T−1 on f , we get

||(T−1
n − T−1)f || ≤||T−1||2 · ||T − Tn|| · ||f ||

+ ||T−1|| · ||T − Tn|| · ||(T−1
n − T−1)f || (4.17)

Since limn→∞ ||Tn − T || = 0, we assume for n ≥ N0, ||Tn − T || · ||T−1|| < 1
2
,

then,

||(T−1
n − T−1)f || ≤ 2||T−1||2 · ||T − Tn|| · ||f ||, ∀n ≥ N0, (4.18)

Eq.(4.15) follows if we take the limit as n→∞ on both sides.

Remark 4.2. The proof is quite standard. It can also be viewed as a modifi-

cation of Theorem 1.16 in Section IV of [31].
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4.2.2 A discrete-type cell problem

In the Eulerian framework, the periodic solution of the cell problem (2.22)

and the corresponding formula for the effective diffusivity (2.23) play a key role

in studying the behaviors of the chaotic and stochastic flows. In the Lagrangian

framework, we shall define a discrete analogue of the cell problem that enables

us to compute the effective diffusivity. We revisit the scheme Eq.(4.4),pn = pn−1 − f(qn−1)∆t+ σNp
n−1

qn = qn−1 + g
(
pn−1 − f(qn−1)∆t

)
∆t+ σN q

n−1,

(4.19)

where Np
n−1, N q

n−1 ∼
√

∆tN (0, 1) are i.i.d. normal random variables.

We will show that the solutions pn and qn obtained by the scheme (4.19)

have bounded expectations if the initial values are bounded. Taking expecta-

tion of the first equation of Eq.(4.19) on both sides, we obtain

Epn = Epn−1 −∆tEf(qn−1) = Ep0 −∆t
n−1∑
k=0

Ef(qk). (4.20)

Applying the Proposition 4.1 and using the fact that f is a periodic function

with zero mean, we know that,

sup
(p0,q0)∈Ỹ

|Ef(qk)| ≤ e−ρk||f ||∞ (4.21)

By applying triangle inequalities in Eq.(4.20) and using the result in Eq.(4.21),

we arrive at,

Epn ≤ |Ep0|+ C1||f ||∞, (4.22)

where C1 does not depend on n. Using the same approach, we know that Eqn

is also bounded. Now, we are in the position to define the discrete-type cell

problem. We first define

f̂(x) = −∆t
∞∑
n=0

E[f(Xn)|X0 = x], x ∈ Ỹ , (4.23)

where the summability is guaranteed by Eq.(4.21). Then, we shall show that

f̂(x) satisfies the following properties.
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Lemma 4.1. According to our assumption on the Hamiltonian, which is sepa-

rable and periodic along each dimension, we know that f is a periodic function

with zero mean on Ỹ , i.e.,
∫
Ỹ
f = 0. Therefore, f̂(x) is the unique solution in

B0(Ỹ ) such that,

f̂(X0) + ∆tf(X0) = E[f̂(X1)|X0]. (4.24)

Moreover, f̂(x) is smooth.

Proof. Throughout the proof, we shall use the fact that if x, y are random

processes and y is measurable under a filtration F , then with appropriate

integrability assumption, we have

E[xy] = E
[
E[xy|F ]

]
= E

[
E[x|F ]y

]
. (4.25)

Some simple calculations will give that

f̂(X0) + ∆tf(X0) =∆tE[
∞∑
m=0

−f(Xm)|X0] + ∆tf(X0) = −∆tE[
∞∑
m=1

f(Xm)|X0]

=−∆tE
[
E[

∞∑
m=1

f(Xm)|X1]|X0

]
= E[f̂(X1)|X0]. (4.26)

Recall the definition of the operator (4.9), Eq.(4.26) implies that

(I∆t − Id)f̂ = I∆tf̂ − f̂ = ∆tf, (4.27)

where Id is the identity operator. Moreover, since f is smooth and the mapping

of the operator I∆t on bounded functions will generate smooth functions, so f̂

is smooth.

According to Proposition 4.1, the invariant (measure) of I∗∆t is unique, i.e.

dimN (I∗∆t − Id) = 1. By the Fredholm alternative and the fact that I∆t is a

compact operator, we arrive at the conclusion that the solution f̂ to Eq.(4.27)

is unique in B(Ỹ ) up to a constant and it smoothly depends on f , given the

assumption that
∫
Ỹ
f = 0.

When the flow is time-independent, we obtain

E[f̂(Xn+1)|Xn]− f̂(Xn) = ∆tf(Xn), a.s. ∀n ∈ N. (4.28)
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Remark 4.3. For the second component of the solution, i.e., qn, we can define

the discrete cell problem in the same manner. Specifically, we define

ĝ(x) = ∆t
∞∑
n=0

E[g(X ′n)|X0 = x], x ∈ Ỹ , (4.29)

where X ′n = Xn−∆tf(Xn). There is no substantial difficulties in carrying out

the analysis for ĝ(x). Because under the assumption that the drift terms f and

g in Eq.(4.1) are smooth enough, the leading order term of g(X ′n) is g(X̃n),

where X̃n belongs to the torus space Ỹ and other terms are small perturbations.

The Proposition 4.1 and the Lemma 4.1 are very general results. We only

need the result that f̂ is unique in an Hölder space Cp,α
0 (Ỹ ) ( B(Ỹ ). To

be precise, given a smooth drift function f , f̂ shall be in Cp,α
0 (Ỹ ), where

p ≥ 6, 0 < α < 1 and the subscript index 0 indicates that it is a subspace with

zero-mean functions. To prove that I∆t is a compact operator from Cp,α
0 (Ỹ )

to itself is quite standard. We can apply the Arzelà-Ascoli theorem to verify

the relative compactness of the operator I∆t by studying its mapped results

on a bounded set. Both equicontinuity and point-wise boundedness come as

the result that I∆t is an integral operator with a smooth kernel. However, we

do not want to complicate the presentation by pursuing this avenue.

4.2.3 Convergence estimate of the discrete-type cell prob-

lem

After defining the discrete-type cell problem (e.g., Eq.(4.27)) and proving

the existence and uniqueness of the solution f̂ , we shall prove that f̂ converges

to the solution of a continuous cell problem in certain subspace, e.g., C6,α
0 (Ỹ ).

We remark that in the remaining part of the proof, we shall choose the space

C6,α
0 (Ỹ ) to carry out our analysis. However there is no requirement that we

have to choose this space. In fact, any space that has certain regularity (be-

longs to the domain of the operator L) will work. To start with, we define the

following continuous cell problem

Lχ1 = f, (4.30)
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4.2. Convergence analysis

where the operator L is defined in Eq.(4.6). Given f is a smooth function

defined on Ỹ with zero mean, the Eq.(4.30) admits a unique solution χ1 in

C6,α
0 (Ỹ ). This is a standard result of elliptic PDEs in Hölder space (see, e.g.,

the Theorem 6.5.3 in [34]). Moreover, L is a bijection between two Banach

spaces C6,α
0 (Ỹ ) and C4,α

0 (Ỹ ), and its inverse is bounded. Integrating Eq.(4.30)

along time gives,

exp(∆tL)χ1 − χ1 = f∆t+O(∆t2) := ∆tf̄ , (4.31)

where f̄ = f +O(∆t). Combining Eqs.(4.27) and (4.31), we obtain

exp(∆tL)χ1 − I∆tf̂ − (χ1 − f̂) = ∆t(f̄ − f) (4.32)

Eq.(4.32) shows the connection between χ1 and f̂ . Afer some simple calcula-

tions, we get

L(χ1 − f̂) = (L − L̃1)(χ1 − f̂) + L̃2f̂ + (f̄ − f), (4.33)

where

L̃1 :=
exp(∆tL)− Id

∆t
, and L̃2 :=

I∆t − exp(∆tL)

∆t
. (4.34)

One can easily verify that in the space of bounded linear operators from

C6,α
0 (Ỹ ) to C4,α

0 (Ỹ ), there is a strong convergence in the operator norm,

L̃1 − L = O(∆t) as ∆t→ 0. (4.35)

Then for the operator L̃2, by using the BCH formula (4.8) we can obtain,

L̃2 →
exp

(
∆t2

2

(
[L3, L2] + [L2, L1] + [L3, L1]

)
+O(∆t3)

)
− Id

∆t
· exp(∆tL)

→∆t

2

(
[L3, L2] + [L2, L1] + [L3, L1]

)
+O(∆t2). (4.36)

Denoting L̃3 := L̃1 + L̃2 ≡ I∆t−Id
∆t

, we have L̃3 → L in B
(
C6,α

0 (Ỹ ),C4,α
0 (Ỹ )

)
.

Then applying the Proposition 4.2, we get,

lim
∆t→0

f̂ = lim
∆t→0

L̃−1
3 f = L−1f = χ1. (4.37)

In addition, combining the results of the Eqns.(4.31), (4.35), (4.36) and (4.37)

for the right hand side of Eq.(4.33), we know that when ∆t small enough
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4.2. Convergence analysis

(does not depend on the total computational time T , but may depend on the

estimate of f , g and σ), the following convergence estimate holds

χ1 − f̂ = O(∆t). (4.38)

Based on the conclusions discussed above, we obtain the convergence estimate

of the discrete-type cell problem. We summarize our result into a lemma as

follows.

Lemma 4.2. When ∆t → 0, the solution f̂ to the discrete-type cell problem

converges to the solution χ1 to the cell problem in Cp,α
0 , at the rate of O(∆t),

where p ≥ 6 and 0 < α < 1.

4.2.4 Convergence estimate for the effective diffusivity

We shall show the main estimates in this section. We first prove that the

second-order moment of the solution obtained by using our numerical scheme

has an (at most) linear growth rate. Secondly, we provide the convergence rate

of our method in computing the effective diffusivity.

Theorem 4.1. Let X∆t
n = (pn, qn) denote the solution of the passive tracer

model (4.1) obtained by using our numerical scheme with time-step ∆t. If

the Hamiltonian H(p, q) is separable, periodic and smooth enough (in order to

guarantee the existence and uniqueness of the solution to the SDE (4.1)), then

we can prove that the second-order moment of the solution X∆t
n (a discrete

Markov process) is at most linear growth, i.e.,

max
n

{
E
||X∆t

n ||2

n

}
is bounded. (4.39)

Proof. We first estimate the second-order moment of the first component of

X∆t
n = (pn, qn), since the other one can be estimated in the same manner.

Simple calculations show that

E[p2
n|(pn−1, qn−1)] = E

(
pn−1 − f(qn−1)∆t+ σNp

i−1

)2

= Ep2
n−1 + ∆t

(
σ2 − 2E[pn−1f(qn−1)]

)
+ ∆t2Ef 2(qn−1).

(4.40)
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We should point out that the term E[pn−1f(qn−1)] corresponds to the con-

vection enhanced level of the diffusivity. Our goal is to prove that the term

E[pn−1f(qn−1)] is bounded over n, though it may depend on f , g and σ. We

now directly compute the contribution of the term E[pn−1f(qn−1)] to the ef-

fective diffusivity with the help of Eq.(4.28),

∆t
n−1∑
i=0

E[pif(qi)] =
n−1∑
i=0

E
[
pi
(
E[f̂(Xi+1)|Xi]− f̂(Xi)

)]
. (4.41)

Let Fi denote the filtration generated by the solution process until Xi. Notice

that pi ∈ Fi, for the Eq.(4.41), we have

RHS =
n−1∑
i=0

E
[
pi
(
f̂(Xi+1)− f̂(Xi)

)]
=

n∑
i=1

E
[
f̂(Xi)(pi−1 − pi)

]
− f̂(X0)p0 + E[f̂(Xn)pn]

=
n∑
i=1

E
[
f̂(Xi)

(
f(pi−1)∆t− σNp

i−1

)]
− f̂(X0)p0 + E[f̂(Xn)pn]. (4.42)

Hence,

1

n
E
[
p2
n|(p0, q0)

]
=

1

n
p2

0 + ∆tσ2 − 2∆t
1

n

n−1∑
i=0

E[pif(qi)] + (∆t)2 1

n

n−1∑
i=0

Ef 2(qi)

=
1

n
p2

0 + ∆tσ2 + (∆t)2 1

n

n−1∑
i=0

Ef 2(qi)−
2

n

n∑
i=1

E
[
f̂(Xi)

(
f(qi−1)∆t− σNp

i−1

)]
− 2

n

(
f̂(X0)p0 − E[f̂(Xn)pn]

)
. (4.43)

Recall the fact that Xn = (pn, qn) converges to the uniform measure in dis-

tribution. So given any continuous periodic function f ∗, the Corollary 4.1

implies

lim
n→∞

Ef ∗(Xn) =

∫
Ỹ

f ∗(x)dx. (4.44)

Furthermore, we have the estimate

lim sup
n→∞

1

n

n∑
i=0

f ∗(Xn) <∞. (4.45)

Applying the Cauchy-Schwartz inequality for the term 2
n

∑n
i=1E

[
f̂(Xi)

(
f(qi−1)∆t−

σNp
i−1

)]
in Eq.(4.43) and replacing f ∗ by f 2 and f̂ 2 in Eq.(4.45), we can

prove that 1
n
E
[
p2
n|(p0, q0)

]
is bounded. Repeat the same trick, we know that

1
n
E
[
q2
n|(p0, q0)

]
is also bounded. Thus, the assertion in Eq.(4.39) is proved.
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In our numerical scheme (4.4), we first fix the time-step ∆t and use it

to compute the effective diffusivity until the result converges to a constant,

which may depend on ∆t. Next, we shall prove that the limit of the constant

converges to the exact effective diffusivity of the original passive tracer model

as ∆t approaches zero. Namely, we shall prove that our numerical scheme is

robust in computing the effective diffusivity.

Theorem 4.2. Let pn, n = 0, 1, .... be the numerical solution of the first compo-

nent of the scheme (4.4) and ∆t denote the time-step. We have the convergence

estimate of the effective diffusivity as

lim
n→∞

Ep2
n

n∆t
= σ2 − 2

∫
T2

χ1f +O(∆t), (4.46)

where the constant in O(∆t) does not depends on the computational time T .

Proof. We divide both sides of the Eq.(4.43) by ∆t and obtain

1

n∆t
E[p2

n|(p0, q0)] =
1

n∆t
p2

0 + σ2 +
∆t

n

n−1∑
i=0

Ef 2(qi)

− 2

n∆t

n∑
i=1

E
[
f̂(Xi)

(
f(qi−1)∆t− σNp

i−1

)]
− 2

n∆t

(
f̂(X0)p0 − E[f̂(Xn)pn]

)
(4.47)

First, we notice that for a fixed ∆t, the terms 1
n∆t

p2
0 and 2

n∆t
f̂(X0)p0 converge

to zero as n → ∞, where we have used the fact f̂(X0) is bounded. Then, for

a fixed ∆t, we have

lim
n→∞

2

n∆t

∣∣E[f̂(Xn)pn]
∣∣ ≤ lim

n→∞

2√
n∆t
||f̂ ||∞E|

pn√
n
| ≤ lim

n→∞

1√
n∆t
||f̂ ||∞E[

p2
n

n
+1] = 0,

(4.48)

where the term E[p
2
n

n
] is bounded due to the Theorem 4.1 and ||f̂ ||∞ →

||χ1||∞ < ∞ due to the Lemma 4.2. Therefore, we only need to focus on

the estimate of terms in the second line of Eq.(4.47), which correspond to the

convection-enhanced diffusion effect. Notice that f̂ ∈ C6,α, we compute the

Ito-Taylor series approximation of f̂(Xi),

f̂(Xi) =f̂(Xi−1) + f̂p(Xi−1)
(
− f(qi−1)∆t+ σNp

i−1

)
+ f̂q(Xi−1)

(
g(pi−1)∆t+ σN q

i−1

)
+

1

2

(
f̂pp(Xi−1) + f̂qq(Xi−1)

)
σ2∆t+O(∆t2). (4.49)
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4.2. Convergence analysis

Since f̂ → χ1 in C6,α
0 , the truncated term O(∆t2) in Eq.(4.49) is uniformly

bounded when ∆t is small enough. Substituting the Taylor expansion of f̂(Xi)

into the target term of our estimate, we get

E[f̂(Xi)(f(qi−1)∆t− σNp
i−1)] = E

[(
f(qi−1)∆t− σNp

i−1

)
·(

f̂(Xi−1) + f̂p(Xi−1)
(
− f(qi−1)∆t+ σNp

i−1

)
+ f̂q(Xi−1)

(
g(pi−1)∆t+ σN q

i−1

)
+

1

2

(
f̂pp(Xi−1) + f̂qq(Xi−1)

)
σ2∆t+O(∆t2)

)]
.

(4.50)

Combining the terms with the same order of ∆t, we obtain

E
[
f̂(Xi)

(
f(qi−1)∆t− σNp

i−1

)]
= ∆tE[f̂(Xi−1)f(qi−1)− σ2f̂p(Xi−1)] +O(∆t2),

(4.51)

where we have used the facts that (1) Xi−1 is independent with Np
i−1 and N q

i−1

so the expectations of the corresponding terms vanish; (2) Np
i−1 and N q

i−1 are

independent so E(Np
i−1N

q
i−1) = 0; and (3) E(Np

i−1)2 = ∆t. Finally, by using

the Corollary 4.1 and noticing the invariant measure is the uniform measure,

we obtain from Eq.(4.47) that

lim
n→∞

1

n∆t
E[p2

n|(p0, q0)] = σ2 − 2

∫
(f̂f − σ2f̂p) +O(∆t). (4.52)

Thus, our statement in the Eq.(4.46) is proved using the facts that f̂ converges

to χ1 (see Lemma 4.2) and
∫
f̂p = 0.

Remark 4.4. If we divide two on both sides of the Eq.(4.46), we can find that

our result recovers the definition of the effective diffusivity DE
11 defined in the

Eq.(2.23).

4.2.5 Generalizations to high-dimensional cases

To show the essential idea of our probabilistic approach, we have carried out

our convergence analysis based on a two-dimensional model problem (4.1). In

fact, the extension of our approach to higher-dimensional problems is straight-

forward. Now we consider a high-dimensional problem as follow,

dXt = v(Xt)dt+ ΣWt, (4.53)
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4.2. Convergence analysis

whereX = (X1, X2, · · · , Xd)T ∈ Rd is the position of a particle, v = (v1, v2, · · · , vd)T ∈

Rd is the Eulerian velocity field at position X, Σ is a d×d constant non-singular

matrix, and Wt is a d-dimension Brownian motion vector. In particular, we

assume the vi does not depend on X i, i = 1, ..., d. Thus, the incompressible

condition for v(X) (i.e. ∇X · v(X) = 0) is easily guaranteed.

For a deterministic and divergence-free dynamic system, Feng et. al. pro-

posed a volume-preserving method [20], which splits an n-dimensional problem

into n− 1 subproblems with each of them being volume-preserving. We shall

modify Feng’s method (first order case) by including the randomness as the

last subproblem to take into account the additive noise, i.e.,

X1∗ = X1
0 + ∆tv1(X1

0 , X
2
0 , X

3
0 , · · · , Xd−1

0 , Xd
0 ),

X2∗ = X2
0 + ∆tv2(X1∗, X2

0 , X
3
0 , · · · , Xd−1

0 , Xd
0 ),

· · · ,

Xd∗ = Xd
0 + ∆tvd(X1∗, X2∗, X3∗, · · · , X(d−1)∗, Xd

0 ),

X1 = X∗ + Σ(W1 −W0),

(4.54)

where W1 −W0 is represented by a d-dimensional independent random vector

with each component of the form
√

∆tξi, ξi ∼ N (0, 1).

The techniques of the convergence analysis for two-dimensional problem

can be applied to high-dimensional problems without much difficulty. For

the high-dimensional problem (4.53), the smoothness and strict positivity of

the transition kernel in the discrete process can be guaranteed if one assumes

that the covariance matrix Σ is non-singular and the scheme (4.54) is ex-

plicit. According to our assumption for the velocity field, the scheme (4.54)

is volume-preserving. Thus, the solution to the first-order modified equation

is divergence-free and the invariant measure on the torus (defined by Rd/Zd,

when period is 1) remains uniform. Finally, the convergence of the cell prob-

lem can be studied by using the BCH formula (4.8) with d+ 1 PDE operators.

Recall that in the Eq.(4.9) we have three PDE operators when we study the

two-dimensional problem. Therefore, our numerical methods are robust in

computing effective diffusivity for high-dimensional problems, which will be
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4.3. Numerical results

demonstrated through the three-dimensional chaotic flow problems in the Sec-

tion 4.3.

4.3 Numerical results

The aim of this section is two-fold. First, we shall design challenging nu-

merical examples to verify the convergence analysis proposed in Theorem 4.2,

especially the Theorem 4.2. Secondly, we shall investigate the existence of

residual diffusivity for several chaotic velocity fields. Without loss of general-

ity, we compute the quantity E[p(T )2]
2T

, which is used to approximate DE
11 in the

effective diffusivity matrix (2.23).

4.3.1 Verification of the convergence rate

We first consider a passive tracer model, where the velocity field is given

by a chaotic cellular flow with oscillating vortices. Specifically, the flow is

generated by a Hamiltonian defined as

H(p, q) =
1

2π
exp(sin(2πp))− 1

4π
exp(cos(4πq + 1)). (4.55)

The motion of a particle moving in this chaotic cellular flow is described by

the SDE, dp = sin(4πq + 1) exp(cos(4πq + 1))dt+ σW1,

dq = cos(2πp) exp(sin(2πp))dt+ σW2,

(4.56)

where σ =
√

2× 0.01, Wi are independent Brownian motions, and the initial

data (p0, q0) follows uniform distributions in [−0.5, 0.5]2.

In our numerical experiments, we use Monte Carlo samples to discretize the

Brownian motions W1 and W2. The sample number is denoted by Nmc. We

choose ∆tref = 0.001 and Nmc = 640, 000 to solve the SDE (4.56) and compute

the reference solution, i.e., the “exact” effective diffusivity, where the final

computational time is T = 12000 so that the calculated effective diffusivity
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converges to a constant. It takes about 20 hours to compute the reference

solution on a 64-core server (Gridpoint System at HKU). The reference solution

for the effective diffusivity is DE
11 = 0.12629.

In Fig.4.1(a), we plot the convergence results of the effective diffusivity

using our method (i.e., E[p(T )2]
2T

) with respective to different time-step ∆t at

T = 6000 and T = 12000. In addition, we show a fitted straight line with

the slope 1.04, i.e., the convergence rate is about (∆t)1.04. Meanwhile, by

comparing two sets of data in the Fig.4.1(a), corresponding to the numerical

effective diffusivity obtained at different computational times, we can see that

error does not grow with respect to time, which justifies the statement in

Theorem 4.2.

0.01 0.020.03 0.06 0.1 0.2 0.3 0.6

 t

10-3

10-2

10-1

T=6000
T=12000
fitted

(a)

0.01 0.020.03 0.06 0.1 0.2 0.3 0.6

 t

10-3

10-2

10-1

T=1200
T=2400
fitted

(b)

Figure 4.1: Error of DE
11 in different computational times and flows with dif-

ferent time-steps. Left: 2D chaotic cellular flow, fitted slope ≈ 1.04; right: 3D

Kolmogorov-type flow, fitted slope ≈ 1.27.

To further study the accuracy and robustness of our numerical method in

solving high-dimensional problems, we consider a 3D Kolmogorov-type flow.

Let (p, q, r) ∈ R3 denote the position of a particle in the 3D Cartesian coor-

dinate system. The motion of a particle moving in the 3D Kolmogorov-type
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flow is described by the following SDE,
dp = cos(4πr + 1) exp(sin(4πr + 1))dt+ σW1,

dq = cos(6πp+ 2) exp(sin(6πp+ 2))dt+ σW2,

dr = cos(2πq + 3) exp(sin(2πq + 3))dt+ σW3,

(4.57)

where Wi are independent Brownian motions. This is inspired by the so-called

Kolmogorov flow [23] (see Eq.(4.59)). The Kolmogorov flow is obtained from

the Arnold-Beltrami-Childress (ABC) flow with A = B = C = 1 and with

cosines taken out. Behaviors of the classic Kolmogrov flow will be discussed

later.

In our numerical experiments, we choose ∆tref = 0.001 andNmc = 6, 400, 000

to solve the SDE (4.57) and compute the reference solution, i.e., the “exact”

effective diffusivity. After some numerical tests, we find that the passive tracer

model will enter a mixing stage if the computational time is set to be T = 2400.

It takes about 56 hours to compute the reference solution on the server and

the reference solution for the effective diffusivity is DE
11 = 0.13106.

In Fig. 4.1(b), we plot the convergence results of the effective diffusivity

using our method with respect to different time-step ∆t. In addition, we show

a fitted straight line with the slope 1.27, i.e., the convergence rate is about

(∆t)1.27. This numerical result also agrees with our error analysis.

4.3.2 Investigation of the convection-enhanced diffusion

phenomenon

We first consider the classical ABC flow with our symplectic stochastic in-

tegrators. The ABC flow is a three-dimensional incompressible velocity field

which is an exact solution to the Euler’s equation. It is notable as a sim-

ple example of a fluid flow that can have chaotic trajectories. The parti-

cle is transported by the velocity field V = (A sin(r) + C cos(q), B sin(p) +

A cos(r), C sin(q) +B cos(p)) and perturbed by an additive noise. The associ-
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ated passive tracer model reads
dp = (A sin(r) + C cos(q))dt+ σW1,

dq = (B sin(p) + A cos(r))dt+ σW2,

dr = (C sin(q) +B cos(p))dt+ σW3,

(4.58)

where Wi are independent Brownian motions. In Fig.4.2, we show the relation

between DE
11 and D0. Recall that the parameter D0 = σ2/2. By setting

A = B = C = 1, we recover the same phenomenon as the Fig.2 in [5], for

D0 ∈ [10−3, 10−1] and can extend to D0 ∈ [10−5, 10−4]; see Fig.4.2. At the

same time, we can see that the Euler method failed when D0 is small, which is

also confirmed in Section 3.3. The Fig.4.2 shows that the DE
11 of the ABC flow

obtained by our symplectic method corresponds to upper-bound of Eq.(2.28),

i.e. the maximal enhancement, DE
11 ∼ O(1/D0). This maximal enhancement

phenomenon may be attributed to the ballistic orbits of the ABC flow, which

was discussed in [39, 55].

10-5 10-4 10-3 10-2 10-1 100 101

D
0

100

101

102

103

104

105

Figure 4.2: Convection-enhanced diffusion with maximal enhancement in ABC

flow: � for the symplectic scheme, × for the Euler scheme, −− for reference

line y = 1
D0

.

From Fig.4.3(a) we can see that diffusing time, i.e., the time that E[p(t)2]
2t

approaches a constant, increases as O(1/D0) when D0 → 0 in the symplectic

scheme. To the best of our knowledge, the O(1/D0) scale of the diffusion
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Figure 4.3: Calculated DE
11 in the ABC flow along time via two different

schemes. Left: symplectic; right: Euler.

time of the ABC flow is not known before. Moreover, Fig.4.3(a) shows that

our numerical scheme is very robust in computing the effective diffusivity for

the ABC flow. However, the Euler scheme gives a wrong result in Fig.4.3(b)

since the time E[p(t)2]
2t

approaching a constant does not agree with the expected

diffusion time O(1/D0). The statement that the Euler scheme will generate

wrong results can also be found in the Fig.4.2.

We point out that the error estimate in Theorem 4.2 is just an upper bound.

Fig.4.4 shows that when D0 is 10−3, the convergence rate is about O(∆t1.42).

It is very expensive to study the passive tracer model for the ABC flow since

the diffusing time is extremely long. In our numerical test for the Fig.4.4, we

choose Nmc = 120, 000, ∆t = 0.001, and T = 12, 000. In this setting, the error

of the Monte Carlo simulation cannot be avoided, so there is a small oscillation

around the fitted slope.

Finally, we investigate the convection-enhanced diffusion phenomenon for

another chaotic flow, i.e., the Kolmogorov flow. The associated passive tracer

model reads, 
dp = sin(r)dt+ σW1,

dq = sin(p)dt+ σW2,

dr = sin(q)dt+ σW3,

(4.59)

where Wi are independent Brownian motions. In Fig.4.5, we show the relation
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Figure 4.4: Error of DE
11 in the ABC flow, the dashed line with � is for the

symplectic scheme, and the slope of the fitted is ≈ 1.42.

between DE
11 and D0, where D0 = σ2/2. For each D0, we use Nmc = 120, 000

particles to solve the SDE (4.59) via the symplectic method and the Euler

method with ∆t = 0.1 . The final computational time is T = 12, 000 so that

the particles are fully mixed for D0 ≥ 10−6.

Under such setting, we find that the dependency of DE
11 on D0 is quite

different from the chaotic and stochastic flows that we have studied in Section

3.3 and from the foregoing ABC flow (maximal enhancement). The fitted slope

withinD0 ∈ [10−6, 10−5] is−0.13, which indicates thatDE
11 ∼ O(1/D0.13

0 ). This

can be called sub-maximal enhancement, which may be explained by the fact

that the Kolmogrov flow is more chaotic than the ABC flow [23]. The chaotic

trajectories in Kolmogorov flow enhance diffusion much less than channel like

structures such as the ballistic orbits of ABC flows [39, 55]. More studies on

the diffusion enhancement phenomenon of the ABC flow and the Kolmogrov

flow, especially the time-dependent cases will be reported in our future work.

We also compare the performance of the symplectic scheme and Euler

scheme in computing the effective diffusivity for the Kolmogrov flow. Specif-

ically, we implement the symplectic scheme and Euler scheme with time step

∆t = 0.1 and ∆t = 0.01, respectively. In Fig.4.5, we find that (1) the symplec-

tic scheme with ∆t = 0.1 and ∆t = 0.01 will give similar results in computing

the effective diffusivity; (2) the symplectic scheme and the Euler scheme with

∆t = 0.01 will give almost the same convergent results in computing the effec-
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4.3. Numerical results

tive diffusivity, which provides evidence that our statement on the Kolmogrov

flow (i.e., the sub-maximal enhancement phenomenon) is correct; (3) the Eu-

ler scheme with ∆t = 0.1 gives wrong results but the symplectic scheme with

∆t = 0.1 gives acceptable results, which provides evidence that the symplectic

scheme is very robust in computing the effective diffusivity. In this example,

the symplectic scheme approximately achieves a 10× speedup over the Euler

scheme.

10-6 10-5 10-4 10-3 10-2 10-1 100 101

D
0

0.2

0.5

1

2

5

10 sym,  t=0.1
em,  t=0.1
sym,  t=0.01
em,  t=0.01
fitted

Figure 4.5: Convection-enhanced diffusion with sub-maximal enhancement in

Kolmogorov flow. “sym” means the results for symplectic scheme and “em”

means the results for Euler scheme. −− means the fitted line for small D0

with slope ≈ −0.13.

Fig.4.6(a) and Fig.4.6(b) show different behaviors of the numerical effective

diffusivity E[p(t)2]
2t

obtained using the symplectic scheme and the Euler scheme

with respect to computational time. Specifically, Fig.4.6(a) shows T = 12000

is quite enough for D0 ≥ 10−6. And in Fig.4.6(b), it seems that in Euler

scheme, the diffusion time is much smaller. Our understanding is that the

numerical diffusion in Euler scheme helps reach its own diffusion time earlier.

In Fig.4.7, we also study the convergence rate of the symplectic scheme in

computing the effective diffusivity for the Kolmogorov flow (4.59). We find

that the convergence rate is O(∆t1.3) in this example.
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Figure 4.6: Calculated DE
11 = E[p(t)2]

2t
in the Kolmogorov flow via two different

schemes. Left: symplectic; right: Euler
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Figure 4.7: Error of DE
11 in the Kolmogrov flow. The slope of the fitted line is

≈ 1.3.
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Chapter 5

Sharp and Uniform in Time

Error Analysis in

Time-Dependent Flows

Comparing with Chapter 4, we will construct stochastic structure-preserving

schemes for a two-dimensional passive tracer model in separable incompressible

flow. This is because in time-dependent case, velocity field defined by ∇⊥H

does not preserve the Hamiltonian. The structure in this chapter is similar to

Chapter 4, but the proof and the numerical phenomenon in time-dependent

flow are different from ones in time-independent cases. On one hand, we will

focus on the distinctness. On the other hand, we will retain the main definition

and derivation for courtesy of readers directly starting from this chapter.

Remark 5.1. Generalization of Eq.2.23 can be obtained as follows. First we

define, the (vector) corrector filed χ(x) satisfies the cell problem,

−D04χ− v(τ, y) · ∇χ = v(τ, y), (τ, y) ∈ T× Td, (5.1)

Then

DE = D0I −
〈
v ⊗ χ

〉
p
, (5.2)

and 〈·〉p denotes temporal and spatial average over T× Td.
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5.1. Stochastic structure-preserving schemes

5.1 Stochastic structure-preserving schemes

5.1.1 Derivation of numerical schemes

Let X = (x1, x2)T denote the position of the particle, then the model can

be written as dx
1 = v1dt+ σdW1,t, x1(0) = x1

0,

dx2 = v2dt+ σdW2,t, x2(0) = x2
0,

(5.3)

where dWi,t, i = 1, 2 are independent Brownian motions. We assume that

v = (v1, v2)T is divergence free and mean-zero at any time t, i.e.,

∇ · v := ∂x1v1 + ∂x2v2 = 0 ∀t, (5.4)

and 
∫
T v1(t, x1, x2)dx2 = 0 ∀x1, t,∫
T v2(t, x1, x2)dx1 = 0 ∀x2, t,

(5.5)

where T = [0, 1] is the one dimensional period space. We assume that the

diagonal of the Jacobian of the velocity field v = (v1, v2)T are all zeros for all

t ∈ T. We also assume the spacial mean of v1 and v2 is zero for all t ∈ T.

Similar to Section 4.1.1, we proposed a stochastic structure-preserving

scheme based on a Lie-Trotter splitting idea to solve the SDE (5.3). Specifi-

cally, we split the problem (5.3) into a deterministic subproblem,dx
1 = v1(t, x2)dt,

dx2 = v2(t, x1)dt,

(5.6)

which is solved by using a symplectic-preserving scheme (e.g., the symplectic

Euler scheme for deterministic equations with frozen time), and a stochastic

subproblem, dx
1 = σdW1,t,

dx2 = σdW2,t,

(5.7)

which is solved by using the Euler-Maruyama scheme [42]. Notice that when

σ is a constant in (5.7), the Euler-Maruyama scheme is exact.
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5.1. Stochastic structure-preserving schemes

Now we discuss how to discretize Eq.(5.3). From time t = tn to time

t = tn+1, where tn+1 = tn + ∆t, t0 = 0, and ∆t is the time step, we assume

the numerical solution Xn = (x1
n, x

2
n)T is given, which approximates the exact

solution X(n∆t) to the SDE (5.3). Then, we apply the Lie-Trotter splitting

method to solve the SDE (5.3) and obtain,x
1
n+1 = x1

n + v1(tn+ 1
2
, x2

n)∆t+ σN1
n,

x2
n+1 = x2

n + v2

(
tn+ 1

2
, x1

n + v1(tn+ 1
2
, x2

n)∆t
)
∆t+ σN2

n,

(5.8)

where tn+ 1
2

= tn + ∆t
2

, N1
n =
√

∆tξ1, N2
n =
√

∆tξ2, and ξ1, ξ2 ∼ N (0, 1) are

i.i.d. normal random variables. The numerical solution converges to the exact

one as the time step ∆t approaches zero.

5.1.2 The backward Kolmogorov equation and related

results

We first define the backward Kolmogorov equation associated with the

Eq.(5.3) as

ut = Lu, u(0, τ, x) = φ(τ, x), (5.9)

where the generator L associated with the Markov process in Eq.(5.3) is given

by

L = ∂τ + v1(τ, x2)∂x1 + v2(τ, x1)∂x2 +
1

2
σ2(∂2

x1 + ∂2
x2). (5.10)

Recall that the solution u(t, τ, x) to the Eq.(5.9) satisfies, u(t, τ, x) =

E(φ(t + τ,Xt+τ )|Xτ = x) where Xt is the solution to Eq.(5.3) and φ is a

smooth function in R1×R2. In other words, u(t, τ, x) is the flow generated by

the original SDE (5.3).

Similarly, we can study the flow generated by the stochastic structure-

preserving scheme (5.8). According to the splitting method used in the deriva-

tion of the scheme in Section 5.1.1, we respectively define L1 = ∂τ , L2 = v1∂x1 ,
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5.1. Stochastic structure-preserving schemes

L3 = v2∂x2 , and L4 = σ2

2
(∂x1x1 + ∂x2x2). Starting from u(0, ·, ·), during one

time step ∆t, we compute

∂tu
1 = L1u

1, u1(0, ·, ·) = u(0, ·, ·),

∂tu
2 = L2u

2, u2(0, ·, ·) = u1(∆t
2
, ·, ·),

∂tu
3 = L3u

3, u3(0, ·, ·) = u2(∆t, ·, ·),

∂tu
4 = L1u

4, u4(0, ·, ·) = u3(∆t, ·, ·),

∂tu
5 = L4u

5, u5(0, ·, ·) = u4(∆t
2
, ·, ·).

(5.11)

Then, u5(∆t, ·, ·) will be the flow at time t = ∆t generated by our stochastic

structure-preserving scheme (5.8) and it approximates the solution u(∆t, ·, ·) to

the Eq.(5.9) well when ∆t is small. It is also worth mentioning that, u3(∆t, ·, ·)

is the exact flow generated by the deterministic symplectic Euler scheme in

solving Eq.(5.6). We repeat this process to compute the flow equations of our

scheme at other time steps, which approximate the solution u(n∆t, ·, ·), n =

2, 3, ... to the Eq.(5.9) at different time steps.

Remark 5.2. Given the operators Li, i = 1, 2, 3, 4, there are many possible

choices in setting the coefficients for each operator Li and designing the split-

ting method; see Section 2.5 of [27]. Eq.(5.11) is a simple choice that was used

for the scheme in this chapter.

Similar to time-independent cases in Chapter 4, to analyze the error be-

tween the flow operator in Eq.(5.9) and the composited operator in Eq.(5.11),

we shall resort to the Baker-Campbell-Hausdorff (BCH) formula. We replace

the matrices in Eq.(4.8) by differential operators and the BCH formula yields

critical insights into the particular structure of the splitting error. Let I∆t

denote the composited flow operator associated with Eq.(5.11), i.e.,

I∆tu(0, ·, ·) := exp(∆tL4) exp(
∆t

2
L1) exp(∆tL3) exp(∆tL2) exp(

∆t

2
L1)u(0, ·, ·).

(5.12)

Notice that after propagating time t = ∆t, the exact solution to the Eq.(5.9)

started at any τ can be represented as

u(∆t, ·, ·) = exp(∆tL)u(0, ·, ·) = exp
(
∆t(L1 +L2 +L3 +L4)

)
u(0, ·, ·). (5.13)
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5.2. Convergence analysis

Therefore, we can apply the BCH formula to analyze the error between the

original flow and the approximated flow. Moreover, we find that computing

the k-th order modified equation associated with Eq.(5.3) in the backward

error analysis (BEA)[46] is equivalent to computing the terms of BCH formula

up to order (∆t)k in the Eq.(5.12). To show that the solution generated by

Eq.(5.8) follows a perturbed Hamiltonian system (with divergence free velocity

and additive noise) at any order p, we only need to consider the (p+ 1)-nested

Lie bracket consists of {∂τ , v1∂x1 , v2∂x2 , σ2

2
(∂x1x1 + ∂x2x2)} and we can easily

see that they will not generate non-divergence free field.

We remark that given any explicit splitting scheme for deterministic sys-

tems, by adding additive noise we shall obtain a similar form of flow propaga-

tion. And we shall see in later proof that, such operator formulation is very

effective in analyzing the order of convergence and volume-preserving property.

5.2 Convergence analysis

We can view the Eq.5.11 as a modification of Eq.5.11. While, the velocity

in τ direction is mean 1 and the diffusion is degenerated. So there will be huge

difference in convergence analysis. This is also the case in comparing parabolic

equation to elliptic equation.

5.2.1 Convergence to an invariant measure

To compute the effective diffusivity of a passive tracer model using a La-

grangian numerical scheme is closely related to study the limit of a solution

sequence (a stochastic process) generated by the numerical scheme. There-

fore, we can apply the results from ergodic theory to study the convergence

behaviors of the solution. We first prove a lemma as follows.

Lemma 5.1. Let Ỹ = Rd/Zd denote the physical torus space and T be the

time periodic space. Let I∗τ,1+τ denote the transform of the density on Ỹ during
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5.2. Convergence analysis

[τ, 1 + τ ] (time period is 1) using the numerical scheme (5.8). In addition, let

Iτ,1+τ denote the adjoint operator (i.e., the flow operator) of I∗τ,1+τ in the space

of B(Ỹ ), which is the set of bounded measurable functions on Ỹ . Then, there

exists one and only one invariant probability measure on (Ỹ ,Σ), denoted by

πτ , satisfying,

sup
x∈Ỹ

∣∣∣((Iτ,1+τ )
nφ
)
(x)−

∫
φ(x′)πτ (dx

′)
∣∣∣ ≤ C||φ||L∞e−ρn, ∀φ ∈ B(Ỹ ), (5.14)

where ρ > 0, C > 0 are independent of φ(·). Moreover, the kernel space of

(Id − Iτ,1+τ ) is the constant functions in Ỹ , where Id is the identity operator.

Proof. We shall verify that the transition kernel associated with the numerical

scheme (5.8) satisfies the assumptions required by Prop. 2.3. First notice that

in the space R2, the integration process associated with the numerical scheme

(5.8) can be expressed as a Markov process with the transition kernel,

Kt

(
Xn, Xn+1

)
=

1

2πσ2∆t
·

exp

(
−

(
x1
n+1−x1

n−v1(t+ ∆t
2
,x2

n)∆t

)2

+

(
x2
n+1−x2

n−v2

(
t+ ∆t

2
,x1

n+1−x1
n−v1(t+ ∆t

2
,x2

n)∆t
)

∆t

)2

2σ2∆t

)
,

(5.15)

where Xn = (x1
n, x

2
n)T and Xn+1 = (x1

n+1, x
2
n+1)T are the numerical solutions

at time t = tn and t = tn+1, respectively.

Then, using the periodicity of v, we directly extend Eq.(5.15) to the torus

space Ỹ as

K̃τ

(
Xn, Xn+1

)
=
∑
i,j∈Z

1

2πσ2∆t
·

exp

(
−

(
x1
n+1+i−x1

n−v1(τ+ ∆t
2
,x2

n)∆t

)2

+

(
x2
n+1+j−x2

n−v2

(
τ+ ∆t

2
,x1

n+1−x1
n−v1(τ+ ∆t

2
,x2

n)∆t
)

∆t

)2

2σ2∆t

)
.

(5.16)

Let K̃τ,τ+k∆t denote the kernel from τ to τ + k∆t, which is the density of the

transition kernel associated with applying our scheme starting from time τ for

k steps. Then, we have

K̃τ,τ+k∆t(X0, Xk) =

∫
(Ỹ )k−1

k−1∏
m=0

K̃τ+m∆t(Xm, Xm+1)dX1dX2 · · · dXk−1. (5.17)
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5.2. Convergence analysis

We choose k = 1
∆t

and obtain K̃τ,τ+1. One can see that the kernel K̃τ,τ+1 is es-

sentially bounded above zero since K̃τ+m∆t in (5.17) are all positive. Moreover,

if 0 < ∆t� 1, K̃τ,τ+1 is a continuous function on the domain Ỹ × Ỹ . Then by

noticing that the domain Ỹ×Ỹ is compact, the kernel K̃τ,τ+1 is strictly positive.

Namely, there exists δτ > 0 such that K̃τ,τ+1(X0, Xk) > δτ , ∀(X0, Xk) ∈ Ỹ ×Ỹ .

If we apply Prop.2.3 to Iτ,1+τ (whose kernel is K̃τ,τ+1), we prove the statement

in (5.14).

Finally, we know that the operator Iτ,1+τ is compact since it is an integral

operator with a continuous kernel. By using the Fredholm alternative, we

know that dim ker(Id− Iτ,1+τ ) = dim ker(Id− I∗τ,1+τ ) = 1. Therefore, it is easy

to verify that the constant functions are in the kernel of Id − Iτ,1+τ .

Equipped with the Lemma 5.1, we study the convergence rate of the space-

time transition kernel associated with our numerical scheme (5.8).

Theorem 5.1. Let ∆t = 1
N

, N is a positive integer. We have the following

properties hold:

(a) Given ∆t, there exists C > 0 and ρ > 0, such that,

sup
τ,x

∣∣∣(IN∆t)nφ(τ, x)−
∫
φ(τ, x′)πτ (dx

′)
∣∣∣ ≤ C||φ||L∞e−ρn, ∀φ ∈ B(T×Ỹ ),

(5.18)

where C and ρ do not depend on φ and τ .

(b) If
∫
Ỹ
φπτ = 0, then we get

lim
n→∞

n∑
i=1

Eφ(τ,XNτ+i) <∞, ∀τ ∈ T. (5.19)

(c) The kernel space of (Id−IN∆t) is {c(τ) | c(τ) is a periodic function in T with period 1}.

Proof. By definition of I∆t and Iτ,1+τ in Eq.(5.12) and Lemma 5.1, we have

(I∆t)
Nφ(τ, ·) ≡ Iτ,1+τφ(τ, ·). To prove the property (a), we need to show

that the lower bound of the kernel K̃τ,τ+1, which is defined in the proof of

Lemma 5.1, does not depend on τ . For all τ ∈ T, Xn = (x1
n, x

2
n)T ∈ T2 and
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5.2. Convergence analysis

Xn+1 = (x1
n+1, x

2
n+1)T ∈ T2, we pick i0 = b−x1

n+1 + x1
n + v1(τ + ∆t

2
, x2

n)∆tc and

j0 = b−x2
n+1 + x2

n + v2

(
τ + ∆t

2
, x1

n+1 − x1
n − v1(τ + ∆t

2
, x2

n)∆t
)
∆tc, where bac

denotes the largest integer not greater than a. Applying to Eq.(5.16), we can

see that

K̃τ

(
Xn, Xn+1

)
≥ 1

2πσ2∆t
·

exp

(
−

(
x1
n+1+i0−x1

n−v1(τ+ ∆t
2
,x2

n)∆t

)2

+

(
x2
n+1+j0−x2

n−v2

(
τ+ ∆t

2
,x1

n+1−x1
n−v1(τ+ ∆t

2
,x2

n)∆t
)

∆t

)2

2σ2∆t

)

≥ 1

2πσ2∆t
exp

(
− 1

σ2∆t

)
> 0. (5.20)

According to the definition of the kernel K̃τ,τ+1; see Eq.(5.17), we know the

minimal value of K̃τ,τ+1 is above zero and is independent of τ . Now, we apply

this observation to Lemma 5.1 and conclude the proof of the property (a). The

property (b) is a simple conclusion of the exponential decay property proved

in (a). For the property (c), we consider the equation IN∆tw = w. Then, for a

given time τ , we have Iτ,1+τw(τ, ·) = w(τ, ·). Notice the fact that in Lemma

5.1 the invariant space of Iτ,1+τ is constant in the spacial variable. Thus, we

obtain w = w(τ).

5.2.2 A discrete-type cell problem

In the Eulerian framework, the periodic solution of the cell problem (5.1)

and the corresponding formula for the effective diffusivity (5.2) play a key role

in studying the behaviors of chaotic and stochastic flows. In the Lagrangian

framework, we shall define a discrete analogue of cell problem that enables us

to compute the effective diffusivity. We revisit the scheme (5.8),x
1
n = x1

n−1 + v1(tn− 1
2
, x2

n−1)∆t+ σN1
n−1,

x2
n = x2

n−1 + v2

(
tn− 1

2
, x1

n−1 + v1(tn− 1
2
, x2

n−1)∆t
)
∆t+ σN2

n−1,

(5.21)

where N1
n−1 =

√
∆tξ1, N2

n−1 =
√

∆tξ2, and ξ1, ξ2 ∼ N (0, 1) are i.i.d. normal

random variables. For convenience we have replaced n+ 1 by n.

First of all, we show that the solutions x1
n and x2

n obtained by the scheme

(5.21) have bounded expectations if the initial values are bounded. Taking
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5.2. Convergence analysis

expectation of the first equation of Eq.(5.21) on both sides, we obtain

Ex1
n = Ex1

n−1 + ∆tEv1(tn− 1
2
, x2

n−1) = Ex1
0 + ∆t

n−1∑
k=0

Ev1(tk+ 1
2
, x2

k). (5.22)

Applying the result (b) of Theorem 5.1 and using the fact that v is a periodic

function with zero mean, we know that,

sup
X0∈Ỹ

|Ev1(tk+ 1
2
, Xk)| ≤ e−ρkCN sup

m=1,2,...,N, x∈Td

||v1(tm+ 1
2
, x)||∞. (5.23)

By applying triangle inequalities in Eq.(5.22) and using the result in Eq.(5.23),

we arrive at,

|Ex1
n| ≤ |Ex1

0|+ C1||v1||∞, (5.24)

where C1 does not depend on n. Using the same approach, we know that

expectation of the second component Ex2
n is also bounded.

Now, we are in the position to define the discrete-type cell problem. Start-

ing at time τ with time step ∆t = 1
N

, we denote the starting time index to be

Nτ . Then, we define

v̂1,N(τ, x) = ∆t
∞∑
i=0

E[v1(ti+ 1
2

+ τ,XNτ+i)|XNτ = x], (5.25)

where the summation is well defined due to the fact stated in Eq.(5.23). We

will show that v̂1,N(τ, x) satisfies the following properties. Namely, v̂1,N(τ, x)

is the solution of the discrete-type cell problem defined in Eq.(5.26).

Lemma 5.2. According to our assumption on v, we know that v1 is a periodic

function with zero mean on Ỹ , ∀τ , i.e.,
∫
Ỹ
v1 = 0. Therefore, v̂1,N(τ, x) is the

unique solution in B0(T× Ỹ ) such that

v̂1,N(τ, x) = (I∆tv̂1,N)(τ, x) + ∆tv1(τ +
∆t

2
, x), (5.26)

where ∆t = 1
N

and the operator I∆t is defined in (5.12). Moreover, v̂1,N(τ, x)

is smooth.

Proof. Throughout the proof, we shall use the fact that if X, Y are random

processes and Y is measurable under a filtration F , then with appropriate

integrability assumption, we have

E[XY ] = E
[
E[XY |F ]

]
= E

[
E[X|F ]Y

]
. (5.27)
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Some simple calculations will give that

v̂1,N(τ, x)−∆tv1(τ +
∆t

2
, x) =∆t

∞∑
i=1

E
[
v1(ti+ 1

2
+ τ,XNτ+i)|XNτ = x

]
=E
[
∆t

∞∑
i=1

E
[
v1(ti+ 1

2
+ τ,XNτ+i)|XNτ+1

]
|XNτ = x

]
=E
[
v̂1,N(τ + ∆t,XNτ+1)|XNτ = x

]
. (5.28)

Recall the definition of the operator I∆t in (5.12), Eq.(5.28) implies that

v̂1,N(τ, x)−∆tv1(τ +
∆t

2
, x) = (I∆tv̂1,N)(τ, x). (5.29)

Suppose we have that I∆tw = w. Then, we get (I∆t)
Nw = w. According

to Theorem 5.1, we know that w = 0 if
∫
Ỹ
wdx = 0, ∀t. So ker(I∆t− Id) = {0}

and v̂1,N is unique. Finally, by the definition of v̂1,N , we obtain that

v̂1,N(x, τ) =∆t
∞∑
i=0

E
[
v1(ti+ 1

2
+ τ,XNτ+i)|XNτ = x

]
=∆t

∞∑
i=0

∫
Ỹ

v1(ti+ 1
2

+ τ, y)K̃τ,τ+i∆t(x, y)dy, (5.30)

which indicates that v̂1,N has the same regularity as v1 does. Notice the kernel

K̃τ,τ+i∆t(x, y) has a fast decay property, which guarantees the order of the

differentiation and summation is interchangeable.

Remark 5.3. When the flow is time-independent, we obtain

E[v̂1,N(Xn+1)|Xn]− v̂1,N(Xn) = −∆tv1(Xn), a.s. ∀n ∈ N. (5.31)

Therefore, the discrete-type cell problem defined in (5.26) is a generalization

of the discrete-type cell problem for time-independent flow problems studied in

Section 4.2.2, although technically it is more involved.

In the remaining part of this paper, we only need the result that v̂1,N(x, τ)

is unique in an Hölder space Cp1,p2,α
0 (T× Ỹ ) ( B(T× Ỹ ). To be precise, given

a smooth drift function v1, v̂1,N(x, τ) will be in Cp1,p2,α
0 (Ỹ ), where p1 ≥ 2, p2 ≥

6, 0 < α < 1 and the subscript index 0 indicates that it is a subspace with

zero-mean functions.
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5.2.3 Convergence estimate of the discrete-type cell prob-

lem

In this section, we shall prove that the solution v̂1,N(τ, x) of the discrete-

type cell problem (i.e., Eq.(5.26)) converges to the solution of a continuous

cell problem in certain subspace. Here, we choose the space C2,6,α
0 (T1 × Ỹ )

to carry out our analysis. However, there is no requirement that we have to

choose this one. In fact, any space that has certain regularity (belongs to the

domain of the operator L) will work. Notice that the continuous cell problem

(5.1) is defined for a vector function, where the first component satisfies

Lχ1 = −v1. (5.32)

For the two-dimensional problem, the operator L is defined in Eq.(5.10). Given

the fact that v1 is a smooth function defined on T1 × Ỹ , which satisfies∫
Ỹ
v1(τ, x)dx = 0, ∀τ ∈ T1. Then, Eq.(5.32) admits a unique solution χ1

in C2,6,α
0 (T1× Ỹ ). This is a standard result of parabolic PDEs in Hölder space

(see, e.g., the Theorem 8.7.3 in [34]). The following theorem states that under

certain conditions the solution of the discrete-type cell problem converges to

the solution of the continuous one.

Theorem 5.2. Assume v1 is a smooth function defined on T1 × Ỹ , satisfying∫
Ỹ
v1(τ, x)dx = 0, ∀τ ∈ T1. Let v̂1 and χ1 be the solutions of the discrete-type

cell problem (5.26) and continuous cell problem (5.32), respectively. Then, we

have the following convergence estimate holds

||χ1 − v̂1|| = O(∆t), (5.33)

where || · || is a function norm associated with the space C2,6,α
0 (T1 × Ỹ ).

Proof. Using Prop. 4.2, one can easily verify that L is a bijection between two

Banach spaces C2,6,α
0 (T1 × Ỹ ) and C1,4,α

0 (T1 × Ỹ ) and its inverse is bounded.

Integrating Eq.(5.32) along time gives,

exp(∆tL)χ1 − χ1 = −v1∆t+O
(
(∆t)2

)
≡ −∆tv̄1, (5.34)
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where v̄1 = v1 +O(∆t). Combining Eq.(5.29) and Eq.(5.34), we obtain

exp(∆tL)χ1 − I∆tv̂1 − (χ1 − v̂1) = ∆t(v1 − v̄1). (5.35)

Notice that Eq.(5.35) shows the connection between χ1 and v̂1. After some

simple calculations, we get that

L(χ1 − v̂1) = (L − L̃1)(χ1 − v̂1) + L̃2v̂1 + (v1 − v̄1), (5.36)

where

L̃1 =
exp(∆tL)− Id

∆t
, and L̃2 =

I∆t − exp(∆tL)

∆t
. (5.37)

Moreover, we can verify that in the space of bounded linear operators from

C2,6,α
0 (Ỹ ) to C1,4,α

0 (Ỹ ), there is a strong convergence in the operator norm || · ||,

||L − L̃1|| = O(∆t) as ∆t→ 0. (5.38)

For the operator L̃2, noticing that L = L1 +L2 +L3 +L4 and operator I∆t is

defined in (5.12), we can use the BCH formula and obtain

L̃2 =
exp

(
(∆t)2

2

(
[L4,L3] + [L4,L2] + [L4,L1] + [L3,L2] + [L2,L1] + [L3,L1]

)
+O(∆t)3

)
− Id

∆t
· exp(∆tL)

→∆t

2

(
([L4,L3] + [L4,L2] + [L4,L1] + [L3,L2] + [L2,L1] + [L3,L1]

)
+O

(
(∆t)2

)
.

(5.39)

Denoting L̃3 ≡ L̃1+L̃2 = I∆t−Id
∆t

, we have L̃3 → L in B
(
C2,6,α

0 (T1×Ỹ ),C1,4,α
0 (T1×

Ỹ )
)

as ∆t approaches zero. Then, applying the Prop. 4.2, we get,

lim
∆t→0

v̂1 = lim
∆t→0

L̃−1
3 (−v1) = L−1(−v1) = χ1. (5.40)

In addition, combining the results of the Eq.(5.34), Eq.(5.38), Eq.(5.39) and

(5.40) for the right hand side of Eq.(5.36), we know that when ∆t is small

enough, the assertion in (5.33) is proved. The constant in the O(∆t) of (5.33)

does not depend on the total computational time T , but may depend on the

regularities of v1, v2 and the constant σ.

5.2.4 Convergence analysis for the effective diffusivity

This section contains the main results of our convergence analysis. We

first prove that the second-order moment of the solution obtained by using our
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5.2. Convergence analysis

numerical scheme has an (at most) linear growth rate. Secondly, we provide the

convergence rate of our numerical method in computing the effective diffusivity.

Theorem 5.3. Let Xn = (x1
n, x

2
n)T denote the solution of the two-dimensional

passive tracer model (5.3) obtained by using our numerical scheme (5.21) with

time step ∆t. If the Hamiltonian function H(t, x1, x2) is separable, periodic

and smooth (in order to guarantee the existence and uniqueness of the solution

to the SDE (5.3)), then we can prove that the second-order moment of the

solution Xn (which can be viewed as a discrete Markov process) is at most

linear growth, i.e.,

max
n

{
E
||Xn||2

n

}
is bounded. (5.41)

Proof. We first estimate the second-order moment of the first component of

Xn = (x1
n, x

2
n)T , since the other one can be estimated in the same manner.

Simple calculations show that

E[(x1
n)2|(x1

n−1, x
2
n−1)] =E

(
x1
n−1 + v1(tn− 1

2
, x2

n−1)∆t+ σN1
i−1

)2

=E(x1
n−1)2 + ∆t

(
σ2 + 2E[x1

n−1v1(tn− 1
2
, x2

n−1)]
)

+ (∆t)2Ev2
1(tn− 1

2
, x2

n−1). (5.42)

The term E[x1
n−1v1(tn− 1

2
, x2

n−1)] corresponds to the strength of the convection-

enhanced diffusion. Our goal here is to prove that it is bounded over n, though

it may depend on v1, v2 and σ. We now directly compute the contribution

of the term E[x1
n−1v1(tn− 1

2
, x2

n−1)] to the effective diffusivity with the help of

Eq.(5.28),

∆t
n−1∑
i=0

E[x1
i v1(ti+ 1

2
, x2

i )] =
n−1∑
i=0

E
[
x1
i

(
v̂1(ti, Xi)− E[v̂1(ti+1, Xi+1)|Xi]

)]
.

(5.43)

Let Fi denote the filtration generated by the solution process until Xi. Notice
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5.2. Convergence analysis

that x1
i ∈ Fi. For the Eq.(5.43), we have

RHS =
n−1∑
i=0

E
[
x1
i

(
v̂1(ti, Xi)− v̂1(ti+1, Xi+1)

)]
,

=
n∑
i=1

E
[
v̂1(ti, Xi)(x

1
i − x1

i−1)
]

+ v̂1(t0, X0)x1
0 − E[v̂1(tn, Xn)x1

n],

=
n∑
i=1

E
[
v̂1(ti, Xi)

(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)]
+ v̂1(t0, X0)x1

0 − E[v̂1(tn, Xn)x1
n].

(5.44)

Hence, we obtain the following result

1

n
E
[
(x1

n)2|(x1
0, x

2
0)
]

=
1

n
(x1

0)2 + ∆tσ2 + 2∆t
1

n

n−1∑
i=0

E[x1
i v1(ti+ 1

2
, x2

i )]

+ (∆t)2 1

n

n−1∑
i=0

Ev2
1(ti+ 1

2
, x2

i ),

=
1

n
(x1

0)2 + ∆tσ2 + (∆t)2 1

n

n−1∑
i=0

Ev2
1(ti+ 1

2
, x2

i )

+
2

n

n∑
i=1

E
[
v̂1(ti, Xi)

(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)]
+

2

n

(
v̂1(t0, X0)x1

0 − E[v̂1(tn, Xn)x1
n]
)
. (5.45)

By using the Cauchy-Schwarz inequality, we know the term

2

n

n∑
i=1

E
[
v̂1(ti, Xi)

(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)]
,

≤ 2

n

n∑
i=1

E
[
2(v̂1(ti, Xi))

2 +
(
(v1(ti− 1

2
, x2

i−1)∆t)2 + (σN1
i−1)2

)]
,

=
2

n

n∑
i=1

E
[
2(v̂1(ti, Xi))

2 + (v1(ti− 1
2
, x2

i−1))2(∆t)2 + σ2∆t
]
. (5.46)

Notice that if v1 and v̂1 are bounded in sup norm, right-hand-side of Eq.(5.46)

is bounded for any n. Other terms on the right-hand side of Eq.(5.45) are

also bounded, which can be checked easily. Therefore, we can prove that

1
n
E
[
(x1

n)2|(x1
0, x

2
0)
]

is bounded. Repeat the same trick, we know that 1
n
E
[
(x2

n)2|(x1
0, x

2
0)
]

is also bounded. Thus, the assertion in Eq.(5.41) is proved.

In practice, we shall first choose a time step ∆t and run our numerical

scheme (5.8) to compute the effective diffusivity until the result converges
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to a constant, which may depend on ∆t. As such, we shall prove that the

limit of the constant converges to the exact effective diffusivity of the original

passive tracer model as ∆t approaches zero. Namely, we shall prove that our

numerical scheme is robust in computing the effective diffusivity. More details

on the numerical results will be given in Section 5.3.

Theorem 5.4. Let x1
n, n = 0, 1, .... be the first component of the numerical

solution obtained by using the scheme (5.8) and ∆t denote the time step. We

have the convergence estimate of the effective diffusivity as

lim
n→∞

E(x1
n)2

n∆t
= σ2 + 2

∫
T2

χ1v1 +O(∆t), (5.47)

where the constant in O(∆t) may depend on the regularity of v1, v2 and the

constant σ, but does not depend on the computational time T .

Proof. We will prove the statement by direct computation. We divide both

sides of the Eq.(5.45) by ∆t and obtain

1

n∆t
E
[
(x1

n)2|(x1
0, x

2
0)
]

=
1

n∆t
(x1

0)2 + σ2 +
∆t

n

n−1∑
i=0

Ev2
1(ti+ 1

2
, x2

i )

+
2

n∆t

n∑
i=1

E
[
v̂1(ti, Xi)

(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)]
+

2

n∆t

(
v̂1(t0, X0)x1

0 − E[v̂1(tn, Xn)x1
n]
)
. (5.48)

First, we notice that for a fixed ∆t, the terms 1
n∆t

(x1
0)2 and 2

n∆t
v̂1(t0, X0)x1

0

converge to zero as n → ∞, where we have used the fact that v̂1(t0, X0) is

bounded. Also notice that the term ∆t
n

∑n−1
i=0 Ev

2
1(ti+ 1

2
, x2

i ) is O(∆t), due to

the term v2
1 is bounded. Then, for a fixed ∆t, we have

lim
n→∞

2

n∆t

∣∣E[v̂1(Xn)x1
n]
∣∣ ≤ lim

n→∞

2√
n∆t
||v̂1||∞E|

x1
n√
n
|

≤ lim
n→∞

1√
n∆t
||v̂1||∞E[

(x1
n)2

n
+ 1] = 0, (5.49)

where the term E[ (x1
n)2

n
] is bounded due to the Theorem 5.3 and ||v̂1||∞ →

||χ1||∞ <∞ due to the Theorem 5.2.

Therefore, we only need to focus on the estimate of terms in the second

line of Eq.(5.48), which correspond to the convection-enhanced diffusion effect.
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Notice that v̂1 ∈ C2,6,α, we compute the Ito-Taylor series approximation of

v̂1(ti, Xi),

v̂1(ti, Xi) = v̂1(ti−1, Xi−1) + v̂1,x1(ti−1, Xi−1)
(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)
+ v̂1,x2(ti−1, Xi−1)

(
v2

(
ti− 1

2
, x1

i−1

)
∆t+ σN2

i−1

)
+

1

2

(
v̂1,x1,x1(ti−1, Xi−1) + v̂1,x2,x2(ti−1, Xi−1)

)
σ2∆t+O

(
(∆t)2

)
,

(5.50)

where we have used the fact that v2

(
ti− 1

2
, x1

i−1+v1(ti− 1
2
, x2

i−1)∆t
)

= v2

(
ti− 1

2
, x1

i−1

)
+

O(∆t), when ∆t is small and v2 is smooth. Since v̂1 → χ1 in C2,6,α
0 , the trun-

cated term O
(
(∆t)2

)
in Eq.(5.50) is uniformly bounded when ∆t is small

enough. Substituting the Taylor expansion of v̂1(ti, Xi) in Eq.(5.50) into the

target term of our estimate (i.e., terms in the second line of Eq.(5.48)), we get

E
[
v̂1(ti, Xi)(v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1)
]

= E
[(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)
·(

v̂1(ti−1, Xi−1) + v̂1,x1(ti−1, Xi−1)
(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)
+ v̂1,x2(ti−1, Xi−1)

(
v2(ti− 1

2
, x1

i−1)∆t+ σN2
i−1

)
+

1

2

(
v̂1,x1,x1(ti−1, Xi−1) + v̂1,x2,x2(ti−1, Xi−1)

)
σ2∆t+O((∆t)2)

)]
.

(5.51)

Combining the terms with the same order of ∆t, we obtain

E
[
v̂1(ti, Xi)

(
v1(ti− 1

2
, x2

i−1)∆t+ σN1
i−1

)]
=∆tE

[
v̂1(ti−1, Xi−1)v1(ti− 1

2
, x2

i−1) + σ2v̂1,x1(ti−1, Xi−1)
]

+O((∆t)2), (5.52)

where we have used the facts that: (1) Xi−1 is independent with N1
i−1 and N2

i−1

so the expectations of the corresponding terms vanish; (2) N1
i−1 and N2

i−1 are

independent so E(N1
i−1N

2
i−1) = 0; and (3) E(N1

i−1)2 = ∆t.

Finally, by using the Theorem 5.1 and noticing the invariant measure is

the uniform measure, we obtain from Eq.(5.48) that

lim
n→∞

1

n∆t
E[(x1

n)2|(x1
0, x

2
0)] = σ2 + 2

∫
(v̂1v1 + σ2v̂1,x1) +O(∆t). (5.53)

Thus, our statement in the Eq.(5.47) is proved using the facts that v̂1 converges

to χ1 (see Theorem 5.2) and
∫
v̂1,x1 = 0.
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Remark 5.4. If we divide two on both sides of the Eq.(5.47), we can find

that our result recovers the definition of the effective diffusivity DE
11 defined

in the Eq.(5.2). Recall that D0 = σ2/2. Theorem 5.4 reveals the connection

of the definition of the effective diffusivity using the Eulerian framework and

Lagrangian framework; see Eq.(5.2) and Eq.(2.29), which is fundamental in this

context. For 3D time-dependent flows problems, the former has good theoretical

values but the latter is computationally accessible.

Remark 5.5. For the second component of the numerical solution, i.e., x2
n,

n = 0, 1, ..., we can obtain the similar convergence result in computing the

effective diffusivity. First we consider ṽ2(t, x1, x2) := v2(t, x1 + v1(t, x2)∆t)

and notice that ṽ2 − v2 = O(∆t) and
∫
T ṽ2dx

1 = 0. The remaining part of

the proof is essentially the same as the results obtained in Sections 5.2.2, 5.2.3

and 5.2.4, so we skip the details here.

5.2.5 Generalizations to high-dimensional cases

To show the essential idea of our probabilistic approach in proving the con-

vergence rate of the numerical schemes, we have carried out our convergence

analysis based on a two-dimensional model problem (5.3). In fact, the exten-

sion of our approach to higher-dimensional problems is straightforward. Now

we consider a high-dimensional problem as follow,

dX = v(t,X)dt+ Σdw(t), (5.54)

whereX = (x1, x2, · · · , xd)T ∈ Rd is the position of a particle, v = (v1, v2, · · · , vd)T ∈

Rd is the Eulerian velocity field at position X, Σ is a d×d constant non-singular

matrix, and dw(t) is a d-dimension Brownian motion vector. In particular, we

assume the component vi does not depend on xi, i = 1, ..., d. Thus, the incom-

pressible condition for v(t,X) (i.e. ∇X · v(t,X) = 0) is easily guaranteed.

For a deterministic and divergence-free dynamic system, Feng et. al. pro-

posed a volume-preserving method [20], which splits a d-dimensional problem

into d− 1 subproblems with each of them being volume-preserving. We shall
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modify Feng’s method (first-order case) by including the randomness as the

last subproblem to take into account the additive noise. Assume the numerical

solution X0 = (x1
0, ..., x

d
0)T is given, the numerical scheme gives

x1∗ = x1
0 + ∆tv1(∆t

2
, x1

0, x
2
0, x

3
0, · · · , xd−1

0 , xd0),

x2∗ = x2
0 + ∆tv2(∆t

2
, x1∗, x2

0, x
3
0, · · · , xd−1

0 , xd0),

· · · ,

xd∗ = xd0 + ∆tvd(
∆t
2
, x1∗, x2∗, x3∗, · · · , x(d−1)∗, xd0),

X1 = X∗ + ΣN∗,

(5.55)

where N∗ is a d-dimensional independent random vector with each component

of the form
√

∆tξi, ξi ∼ N (0, 1).

The techniques of the convergence analysis for the two-dimensional problem

can be applied to high-dimensional problems without much difficulty. For the

high-dimensional problem (5.54), the smoothness and strict positivity of the

transition kernel in the discrete process can be guaranteed if one assumes that

the covariance matrix Σ is non-singular and the scheme (5.55) is explicit.

According to our assumption for the velocity field, the scheme (5.55) is

volume-preserving for each step. Thus, the solution to the first-order modified

equation is divergence-free and the invariant measure on the torus (defined

by Rd/Zd, when the period is 1) remains uniform for all t. Finally, the con-

vergence of the cell problem can be studied by using the BCH formula (4.8)

with d + 2 differential operators. Recall that in the Eq.(5.12) we have four

differential operators when we study the two-dimensional problem. Therefore,

our numerical methods are robust in computing effective diffusivity for high-

dimensional problems, which will be demonstrated through time-dependent

chaotic flow problems in three-dimensional space in the Section 5.3.
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5.3. Numerical results

5.3 Numerical results

In this section, we will present numerical examples to verify the conver-

gence analysis of the proposed method in computing effective diffusivity for

time-dependent chaotic flows. In addition, we will investigate the convection-

enhanced diffusion phenomenon in 3D time-dependent flow, i.e., the time-

dependent ABC flow and the time-dependent Kolmogorov flow. Without loss

of generality, we compute the quantity E(x1(T ))2

2T
, which is used to approximate

DE
11 in the effective diffusivity matrix (5.2).

5.3.1 Verification of the convergence rate

We first consider a two-dimensional passive tracer model. Let (x1, x2)T ∈

R2 denote the position of a particle. Its motion is described by the following

SDE,dx
1 = sin

(
4x2 + 1 + sin(2πt)

)
exp

(
cos
(
4x2 + 1 + sin(2πt)

))
dt+ σW1,t,

dx2 = cos
(
2x1 + sin(2πt)

)
exp

(
sin
(
2x1 + sin(2πt)

))
dt+ σW2,t,

(5.56)

where σ =
√

2× 0.1, Wi,t, i = 1, 2 are independent Brownian motions, and

the initial data (x1
0, x

2
0)T follows uniform distributions in [−0.5, 0.5]2. One can

easily verify the velocity field in (5.56) is time-dependent and divergence free.

In our numerical experiments, we use Monte Carlo samples to discretize

the Brownian motions W1,t and W2,t. The sample number is denoted by Nmc.

We choose ∆tref = 1
212 and Nmc = 3, 200, 000 to solve the SDE (5.56) to

compute the reference solution, i.e., the “exact” effective diffusivity, where the

final computational time is T = 3000 so that the calculated effective diffusivity

converges to a constant. In fact, we find that the passive tracer model will

enter a mixing stage if the computational time is bigger than T = 1000. It

takes about 17 hours to compute the reference solution on a 80-core server

(HPC2015 System at HKU). The reference solution for the effective diffusivity

is DE
11 = 0.219.
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5.3. Numerical results

In Fig.5.1(a), we plot the convergence results of the effective diffusivity

using our method (i.e., E(x1(T ))2

2T
) with respective to different time-step ∆t at

T = 3000. In addition, we show a fitted straight line with the slope 1.04,

i.e., the convergence rate is about (∆t)1.04. This numerical result verifies the

convergence analysis in Theorem 5.4.
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Figure 5.1: Error of DE
11 for two time-dependent flows with different time-steps.

(a) 2D time-dependent chaotic flow, fitted slope≈ 1.04; (b) 3D time-dependent

Kolmogorov flow, fitted slope ≈ 1.22.

To further study the accuracy and robustness of our method for long-time

integration, we consider a 3D time-dependent Kolmogorov flow problem. Let

(x1, x2, x3)T ∈ R3 denote the position of a particle. The motion of a par-

ticle moving in the 3D time-dependent Kolmogorov flow is described by the

following SDE, 
dx1 = sin

(
x3 + ε sin(2πt)

)
dt+ σdW1,t,

dx2 = sin
(
x1 + ε sin(2πt)

)
dt+ σdW2,t,

dx3 = sin
(
x2 + ε sin(2πt)

)
dt+ σdW3,t.

(5.57)

where W1,t, W2,t and W3,t are independent Brownian motions. When ε = 0,

the velocity field in (5.57) corresponds to the Kolmogorov flow [23]. The

Kolmogorov flow possesses very chaotic behaviors [10], which brings challenges

for our method.

In our numerical experiment, we choose ε = 10−1 and σ =
√

2× 10−3 in

the Eq.(5.57). We choose ∆tref = 1
2048

and Nmc = 480, 000 to compute the
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5.3. Numerical results

reference solution for the SDE (5.57), i.e., the “exact” effective diffusivity. In

our numerical tests, we find that the passive tracer model will enter a mixing

stage if the computational time is bigger than T = 2000. To show the accuracy

and robustness of our numerical scheme, we set T = 105 here. It takes about

59 hours to compute the reference solution on the server and the reference

solution for the effective diffusivity is DE
11 = 0.693.

In Fig.5.1(b), we plot the convergence results of the effective diffusivity

using our method with respect to different time-step ∆t. In addition, we show

a fitted straight line with the slope 1.22, i.e., the convergence rate is about

(∆t)1.22. This numerical result again agrees with our error analysis.

5.3.2 Investigation of the convection-enhanced diffusion

phenomenon

As we have already demonstrated in Section 5.3.1, our method is very accu-

rate and robust for long-time integration. Here, we will study the dependence

of the effective diffusivity DE
11 on different parameters in the time-dependent

flows. First of all, we solve Eq.(5.57) and carry out the test for the 3D time-

dependent Kolmogorov flow.

In Fig.5.2, we show the time evolution of E(x1(t))2

2t
for different D0’s (here

D0 = σ2/2) and for four different ε’s, where the result in Fig.5.2(d) corre-

sponding to the time-independent Kolmogorov flow (see 4.6(a)). Notice that

in Eq.(5.57) the parameter ε controls the strength of the time dependence.

For each D0 and ε, we use Nmc = 240, 000 particles to solve the SDE (5.57).

We find that for each given D0, the time evolution of E(x1(t))2

2t
converges as ε

approaches zero. This can be rigorously justified through analysis. In addi-

tion, we observe a certain amount of enhanced diffusion when D0 decreases.

However, the dependency of DE
11 on D0 is quite different from the pattern of

the time-dependent ABC flow, which is known as the maximal enhancement

and will be discussed later; see Fig.5.5.
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To study the dependence of DE
11 on D0 and ε, we choose different ε’s and

D0’s and compute the corresponding effective diffusivity DE
11. In this experi-

ment, we use ∆t = 2−7 and Nmc = 240, 000 particles to compute. The final

computational time is T = 105 so that the particles are fully mixed. We show

the numerical results in Fig.5.3.

We find that for each given D0 as ε decreases the corresponding effec-

tive diffusivity DE
11 converges to the effective diffusivity DE

11 associated with

ε = 0. This means the time dependency of ε improves the chaotic property

of Kolmogorov flow though, it does not change the pattern of convection-

enhanced diffusion in the Kolmogorov flow. When ε ≤ 1 the fitted slope

within D0 ∈ [10−5, 10−3] is −0.2, which indicates that DE
11 ∼ O(1/D0.2

0 ). We

call this behavior as a sub-maximal enhancement, which may be explained by

the fact that the Kolmogorov flow is more chaotic than the ABC flow [23].

The chaotic trajectories in Kolmogorov flow enhance diffusion much less than

channel-like structures such as the ballistic orbits of ABC flows [39, 55].

Next, we use our stochastic structure-preserving scheme to solve time-

dependent ABC flow problems. Let (x1, x2, x3)T ∈ R3 denote the position

of a particle in the 3D Cartesian coordinate system. The motion of a particle

moving in the 3D time-dependent ABC flow is described by the following SDE,
dx1 = A sin

(
x3 + ε sin(2πt)

)
dt+ C cos

(
x2 + ε sin(2πt)

)
dt+ σdW1,t,

dx2 = B sin
(
x1 + ε sin(2πt)

)
dt+ A cos

(
x3 + ε sin(2πt)

)
dt+ σdW2,t,

dx3 = C sin
(
x2 + ε sin(2πt)

)
dt+B cos

(
x1 + ε sin(2πt)

)
dt+ σdW3,t,

(5.58)

where W1,t, W2,t and W3,t are independent Brownian motions. For ε = 0 and

σ = 0, the velocity field in (5.58) corresponds to the standard ABC flow [13].

The ABC flow is a three-dimensional incompressible velocity field which is an

exact solution to the Euler’s equation. It is notable as a simple example of a

fluid flow that can have chaotic trajectories. In our numerical experiments, we

set A = B = C = 1.

In Fig.5.4, we show the time evolution of the E(x1(t))2

2t
for different D0’s
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Figure 5.2: Time evolution of the E(x1(t))2

2t
for different D0’s and ε’s. (a) ε = 10,

(b) ε = 1, (c) ε = 0.1, (d) ε = 0.

10-5 10-4 10-3 10-2 10-1

D
0

10-1

100

=10
=1

=10-1

=10-2

=0

Figure 5.3: Convection-enhanced diffusion with a sub-maximal enhancement

in the time-dependent Kolmogorov flow.
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(here D0 = σ2/2) and for four different ε’s, where the result in Fig.5.4(d)

corresponding to the time-independent ABC flow (see Fig.4.3(a)). Again the

parameter ε controls the strength of the time dependence. For each D0 and ε,

we use Nmc = 240, 000 particles to solve the SDE (5.58). We find that for each

given D0, the time evolution of the E(x1(t))2

2t
converges when ε converges to zero.

However, we observe two different patterns compared with the results shown

in Fig.5.2. First, when we decrease D0, it takes a longer time for the system to

enter a mixing stage. Second, we observe a large amount of enhanced diffusion

when D0 decreases.

To further investigate the dependence of DE
11 on D0 and ε, we choose dif-

ferent ε’s and D0’s and compute the corresponding effective diffusivity DE
11. In

this experiment, we use ∆t = 2−7 and Nmc = 240, 000 particles to compute.

The final computational time is T = 105 so that the particles are fully mixed.

In Fig.5.5, we show the numerical results. We find that for each given

D0, as ε decreases the corresponding effective diffusivity DE
11 converges to the

effective diffusivity DE
11 associated with ε = 0. Thus, the time-dependent

ABC flow has a similar convection-enhanced diffusion behavior as the time-

independent ABC flow. The fitted slope within D0 ∈ [10−5, 10−1] is about

−1.0, which indicates that DE
11 ∼ O(1/D0). This result indicates that the DE

11

of the time-dependent ABC flow achieves the upper-bound of Eq.(2.28), i.e.

the maximal enhancement. This maximal enhancement phenomenon may be

attributed to the ballistic orbits of the ABC flow, where the time-independent

case was discussed in [39, 55].

Moreover, our result for D0 ∈ [10−3, 10−1] and ε = 0 recovers the same

phenomenon as the Fig.2 in [5], which was obtained by using the Eulerian

framework, i.e., solving a cell problem. In Fig.5.5, our method can be easily

used to compute the effective diffusivity when D0 ∈ [10−5, 10−4]. It will be,

however, extremely expensive for the Eulerian framework since one needs to

solve a convection-dominated PDE (5.1) in 3D space, whose Péclet number is

proportion to 1/D0.
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Figure 5.4: Time evolution of the E(x1(t))2

2t
for different D0 and ε. (a) ε = 10,

(b) ε = 1, (c) ε = 0.1, (d) ε = 0.
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Figure 5.5: Convection-enhanced diffusion with a maximal enhancement in the

time-dependent ABC flow.
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Finally, we investigate the dependence of DE
11 on the frequency of the time-

dependent ABC flow. Specifically, we solve the following SDE,
dx1 = A sin

(
x3 + sin(Ωt)

)
dt+ C cos

(
x2 + sin(Ωt)

)
dt+ σdW1,t,

dx2 = B sin
(
x1 + sin(Ωt)

)
dt+ A cos

(
x3 + sin(Ωt)

)
dt+ σdW2,t,

dx3 = C sin
(
x2 + sin(Ωt)

)
dt+B cos

(
x1 + sin(Ωt)

)
dt+ σdW3,t,

, (5.59)

where A = B = C = 1 and Ω is the frequency. Here we first choose ∆t = 2−7,

Nmc = 240, 000 and T = 105. Then, we choose different Ω and compute the

corresponding effective diffusivity DE
11.

In Fig.5.6, we show the numerical results. We find that when Ω is near 0.1

the diffusion enhancement is weak. When Ω is away from 0.1, say Ω < 0.05 or

Ω > 0.2, we observe the maximal enhancement phenomenon. A similar sensi-

tive dependence on the frequency of time-dependent ABC flows was reported

in [7], where the Lyapunov exponent of the deterministic time-dependent ABC

flow problem (i.e., σ = 0 in Eq. (5.59)) was studied as the indicator of the

extent of chaos; see Fig.2 and Fig.3 of [7].

When Ω = 0, the flow of (5.59) is the same as that for ε = 0 case in

(5.58), which will give the maximal enhancement phenomenon. When Ω is

positive, the flow becomes time-dependent and the regions of chaos expand

until the extent of chaos (i.e. the Lyapunov exponent) appears to reach a

maximum, which is corresponding to Ω = 0.1. It seems that the diffusion

enhancement is significantly weakened in this range of Ω. When Ω continues

to grow, the islands of the integrability regrow and the chaotic regions have

shrunk significantly. We again observe the maximal enhancement phenomenon

in this range of Ω. Our numerical results suggest that the level of chaos and

the strength of diffusion enhancement seem to compete with each other. More

intensive theoretic and numerical studies will be reported in our future work.
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Figure 5.6: Dependence of DE
11 on the frequency of the time-dependent ABC

flow.
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Chapter 6

Sharp and Uniform in Time

Error Analysis in Random Flows

6.1 Preliminaries

To make this chapter self-contained, we give a brief review of existing results

on convection-enhanced diffusion in random flows and the effective diffusivity.

Since these are standard results, we adopt the notations that were used in

[17, 19].

6.1.1 Some formulations and results for diffusion in ran-

dom flows

Let (X ,H, P0) be a probability space. Let τx, x ∈ Rd be an almost surely

continuous, jointly measurable group of measure preserving transformation on

X with the following properties:

(T1) τ0 = IdX and τx+y = τxτy, ∀ x, y ∈ Rd.

(T2) The mapping (χ, x) 7→ τxχ is jointly measurable.

(T3) P0(τx(A)) = P0(A), for x ∈ Rd, A ∈ H.
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6.1. Preliminaries

(T4) limx→0 P0

(
χ : |f ◦ τx(χ)− f(χ)| ≥ η

)
= 0, ∀f ∈ L2(X ) and ∀η > 0.

(T5) If P0

(
A∆τx(A)

)
= 0, ∀ x ∈ Rd, then A is a trivial event, i.e., P0(A) is

either 0 or 1.

One can verify that τx induces a strongly continuous group of unitary mapping

Ux on L2(X ), which satisfies

Uxf(χ) = f(τx(χ)), f ∈ L2(X ), x ∈ Rd. (6.1)

In addition, it is easily to find that the group Ux has d independent, skew-

adjoint generators Dk : Dk → L2(X ) corresponding to directions ek, k =

1, · · · , d.

We introduce some function spaces that are useful in the analysis. Let

Cm
b (X ) be the space of functions f in the intersection of the domains of Dn

k

with ||Dn
kf ||L∞(X ) < +∞, k = 1, · · · , d, n = 1, · · · ,m. It is well known

that C∞b (X ) = ∩m≥1C
m
b (X ) is dense in Lp(X ), 1 ≤ p < +∞; see [12]. Let

L2
0(X ) = {f ∈ L2(X )|E0f = 0}, where E0 is the expectation associated with

the probability measure P0.

Let Ω be the space of X -valued continuous function C([0,∞);X ) and let

` be its Borel σ−algebra. Let P t, t ≥ 0, be a strongly continuous Markov

semigroup on L2(X ), which satisfies the following properties.

(P1) P t1 = 1 and P tf ≥ 0, if f ≥ 0.

(P2)
∫
P tfdP0 =

∫
fdP0, for all f ∈ L2(X ), t ≥ 0.

(P3) Eχ[f(θt+h(ω))|`≤t] = P hF (ω(t)), where F (χ) := Eχf , for any f ∈ L1(Ω),

t, h ≥ 0, χ ∈ X .

In the property P3, Eχ[·] is the expectation associated with the probability

measures Pχ, `≤t are the σ-algebras generated by events measurable up to

time t, and θt(ω)(·) := ω(· + t), t ≥ 0 is the standard shift operator on the

path space (Ω, `).
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Moreover, we can define a Markovian measure P on the path space (Ω, `)

through

P (A) =

∫
Pχ(A)P0(dχ), A ∈ ` (6.2)

and define E to be the corresponding expectation operator with respect to the

measure P . As a direct consequence of (T3) and (P2), we know that P is

stationary.

Proposition 6.1. P is invariant under the action of θt and τx for any (t, x) ∈

R+ × Rd.

Let L : D(L)→ L2(X ) be the generator of the semigroup P t. To establish

the central limit theorem for the Markov process associated with P t, we assume

the generator L satisfies the following time relaxation property, also known as

the spectral gap condition,

−(Lf, f)L2(X ) ≥ c1||f ||2L2(X ), where c1 > 0. (6.3)

The time relaxation property (6.3) is equivalent to the exponential decay prop-

erty

||P tf ||L2(X ) ≤ exp(−c1t)||f ||L2(X ), f ∈ L2
0(X ). (6.4)

In addition, time relaxation property (6.3) is equivalent to ρ-mixing of the

process X(t), t ≥ 0. Specifically, let

ρ(h) = sup{Cor(Y1, Y2) : Y1 is `≥t+h measurable, Y2 is `≤t measurable}

, where Cor(Y1, Y2) is the correlation function. Then, (6.3) or (6.4) implies

that limh→∞ ρ(h) = 0; see [14, 48]. The time relaxation property (6.3) (or the

exponential decay property (6.4)) plays an important role in proving the ex-

isting of the effective diffusivity. We will numerically investigate this property

in Section 6.4.
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6.1.2 The continuous-type corrector problem and effec-

tive diffusivity

Equipped with the necessary properties and notations, we are ready to

study the effective diffusivity of the random flows associated with the passive

tracer model (2.1). First we assume that the random flow v = (b1, ..., bd) ∈

(L2(X ))d is jointly continuous in (t, x), locally Lipschitz in x, with finite second

moments, and is divergence free. We are interested in the statistical properties

of the solution X(t), which only requires convergence in law. Therefore, our

assumptions on the velocity field v are reasonable.

For each fixed realization ω of the environment, we consider the stochastic

process generated by the following SDE,dX
ω
t = v(t,Xω

t , ω)dt+ σdWt,

Xω
0 = 0,

(6.5)

where Xω
t ∈ Rd is the position of the particle and the superscript in Xω

t means

that it depends on the realization of the environment ω. Here, the random

flow means v(t, x, ω) = v(τxω(t)). Viewed from a particle at any instant of

time t, we can define an environment process η : [0,∞)× Ω→ X asη(t) = τXω
t
ω(t),

η(0) = ω(0).
(6.6)

In addition, environment process generates a semigroup of transformation

Stf(χ) = Eχf(η(t)), t ≥ 0, ∀f ∈ L∞(X ), (6.7)

where η(t) is defined by (6.6). And St satisfies the following properties,

Proposition 6.2. [(P1)]

1. St, t ≥ 0 is a strongly continuous, Markov semigroup of contraction on

L2(X ).

2. St, t ≥ 0 is measure-preserving, that is,∫
StfdP0 =

∫
fdP0, t ≥ 0, f ∈ L2(X ). (6.8)
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Let D1 = D(L) ∩ C2
b (X ) and L denote the generator of the semigroup St,

t ≥ 0, i.e.,

Lf = Lf +
σ2

2
∆f + v · ∇f, (6.9)

where L is the generator of the semigroup P t. One can easily verify the

following properties.

Proposition 6.3. [(P1)]

1. D1 is dense in L2(X ) and is invariant under the semigroup P t, t ≥ 0,

i.e., P t(D1) ⊆ D1 for all t ≥ 0.

2. Assume that the random flow v is bounded. Then, D1 is invariant under

the semigroup St, t ≥ 0, i.e., St(D1) ⊆ D1 for all t ≥ 0.

Lemma 6.1. From the spectral gap condition (6.3), we obtain that for any

f ∈ L2
0(X )

||Stf ||L2(X ) ≤ exp(−c1t)||f ||L2(X ), where c1 > 0. (6.10)

Proof. We first assume v is bounded and f ∈ D1 ⊆ D(L). Using the spectral

gap condition and v is divergence free, we have

(−Lf, f)L2
0(X ) ≥ (−Lf, f)L2

0(X ) ≥ c1||f ||2L2
0(X ) (6.11)

for all f ∈ D1 ∩ L2
0(X ). By Proposition 6.3, Stf ∈ D1, t ≥ 0 for any f ∈ D1.

Consequently,

d

dt
||Stf ||2L2(X ) = 2(LStf, Stf)L2(X ) ≤ −2c1||Stf ||2L2(X ), (6.12)

thus

||Stf ||2L2(X ) ≤ exp(−c1t)||f ||2L2(X ) ∀t ≥ 0 (6.13)

and f ∈ D1 ∩ L2
0(X ). Then, the statement in (6.10) is extended to L2

0(X ) by

using an approximation argument. Finally, the boundedness of the random

flow v is removed by using another approximation argument.

Given the semigroup of transformation St in (6.7) and its associated prop-

erties; see Proposition 6.2, we can define

ψ =

∫ ∞
0

Stvdt (6.14)
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which satisfies the following continuous-type corrector problem

Lψ = −v (6.15)

where L is the generator of St defined in (6.9). By solving the corrector problem

(6.15), we are able to define the effective diffusivity. This can be summarized

into the following result.

Proposition 6.4. Let X(t) be the solution to (2.1) and Xε(t) ≡ εX(t/ε2).

For any unit vector v ∈ Rd, let ψv = ψ · v denote the projection of the vector

solution ψ along the direction v, where ψ is the solution to corrector problem

(6.15). Then, the law of the process Xε(t) · v converges weakly in C[0,+∞) to

a Brownian motion with diffusion coefficient given by

vTDEv =
σ2

2
+ (−Lψv, ψv)L2(X ), (6.16)

where DE is the effective diffusivity associated with the passive tracer model

(2.1).

The proof of Prop. 6.4 relies on an approximation of the additive functional

of an ergodic Markov process by a martingale and applying the central limit

theorem to continuous-time Markov process, which is very useful in studying

the long-time behavior of random dynamics; see Lemma 1 of [19] or Theorem

of [8]. We shall prove in Theorem 6.7 that the numerical solutions obtained

by our Lagrangian numerical scheme recover the definition of the effective

diffusivity in (6.16).

6.2 Stochastic structure-preserving schemes and

related properties

6.2.1 Derivation of numerical schemes

In this part, we construct numerical schemes for the passive tracer model

(6.5), which is based on an operator splitting method [51]. For each fixed
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realization ω of the environment, we first split the original problem (6.5) into

two sub-problems.

dXω
t = v(t,Xω

t , ω)dt, (6.17)

dXω
t = σdWt. (6.18)

Let Xω
n denote the numerical solution of Xω

t at time t = tn, n = 0, 1, 2, ....

From time t = tn to time t = tn+1, where tn+1 = tn + ∆t, t0 = 0, assuming

the solution Xω
n is given, we now discuss how to discretize the above two

sub-problems (6.17)-(6.18), separately.

In the sub-problem (6.17), the velocity v(t, x, ω) is almost surely divergence-

free and has certain regularity in the physical space. Thus, we apply a volume-

preserving scheme to discretize (6.17). Let Φ∆t denote the numerical integrator

associated with the volume-preserving scheme during ∆t time and let DΦ∆t

denote the corresponding Jacobian matrix. The volume-preserving property

requests det(DΦ∆t) = 1. We obtain the numerical integrator for the sub-

problem (6.17) as follows,

Xω
n+1 = Φ

ω(n∆t)
∆t

(
Xω
n

)
, (6.19)

where the superscript in Φ
ω(n∆t)
∆t means that the numerical integrator implicitly

depends on the realization of v at different computational times. Suppose v

has bounded first derivatives with respect to x for almost all ω, it is easy

to verify that the volume-preserving integrator Φ
ω(n∆t)
∆t also has bounded first

derivatives for ∆t small enough. Thus, Φ
ω(n∆t)
∆t is well defined.

In addition, we assume that the numerical scheme only relies on the in-

formation of X and v at the beginning of each computational time, in order

to make sure the solution process generated by our method is a Markov pro-

cess. For instance, to compute Xω
n+1 the numerical scheme only relies on the

information of X and v at t = tn.

We illustrate this idea by constructing a volume-preserving scheme for a

two-dimensional problem. Let Xω
n = (Xω

n,1, X
ω
n,2)T denote the numerical solu-

tion at time t = tn and the velocity v(t, x, ω) = (b1(t, x, ω), b2(t, x, ω))T . Then,
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we apply a midpoint scheme to discretize (6.17) and obtain

(Xω
n+1,1, X

ω
n+1,2)T = (Xω

n,1, X
ω
n,2)T+∆tv

(
tn, (

Xω
n,1 +Xω

n+1,1

2
,
Xω
n,2 +Xω

n+1,2

2
)T , ω

)
.

(6.20)

By solving Eq.(6.20) to get (Xω
n+1,1, X

ω
n+1,2)T , we implicitly define a numerical

integrator Φ
ω(n∆t)
∆t ; see Eq.(6.19). Since v(t, x, ω) is almost surely divergence-

free, we can easily verify that the scheme (6.20) is volume-preserving, i.e,

det(DΦ
ω(n∆t)
∆t ) = 1. Moreover, simple Taylor-expansion analysis shows that

the local truncation error of the scheme (6.20) is O(∆t)2.

For a d-dimensional sub-problem (6.17), we split the velocity field v(t, x, ω)

into a summation of d − 1 velocity fields, where each of them will generate a

two-dimensional problem and thus we can design the volume-preserving scheme

accordingly. By applying a splitting method [38], we can construct volume-

preserving schemes for the original d-dimensional sub-problem (6.17). More

details can be found in [20, 27].

Given the numerical integrator Φ
ω(n∆t)
∆t , we define the mapping

V
ω(n∆t)

∆t (x) = Φ
ω(n∆t)
∆t (x)− x. (6.21)

One can easily verity that V
ω(n∆t)

∆t (Xω
n ) is an approximation of the increment

for the exact solution of the sub-problem (6.17) as follows,

Xω
(n+1)∆t −Xω

n∆t =

∫ (n+1)∆t

n∆t

v(t,Xω
t , ω)dt. (6.22)

The sub-problem (6.18) can be approximated easily using the Euler-Maruyama

scheme [32].

Finally, we apply the Lie-Trotter splitting method and get the stochastic

structure-preserving scheme as follows,

Xω
n+1 = Xω

n + V
ω(n∆t)

∆t (Xω
n ) + σNn, (6.23)

where Nn = (N1, ..., Nd)
T is a d-dimensional i.i.d. mean-free Gaussian random

vector with ENn ⊗Nn = ∆tId. Here Id is an identity matrix.
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The volume-preserving schemes for the sub-problem (6.17) are implicit in

general. Compared with explicit schemes, however, they allow us to choose a

relatively larger time step to compute. In practice, we find that a few steps of

Newton iterations are good enough to maintain accurate results. Therefore, the

computational cost is controllable. To design adaptive time-stepping method

for the passive tracer model (6.5) is an interesting issue, which will be studied

in our future work.

In general, the second-order Strang splitting [51] is more frequently used in

developing numerical schemes. In fact, the only difference between the Strang

splitting method and the Lie-Trotter splitting method is that the first and last

steps are half of the time step ∆t. For the SDEs, however, the dominant source

of error comes from the random subproblem (6.18). Thus, it is not necessary

to implement the Strang splitting scheme here.

6.2.2 Some properties of the numerical schemes

In this subsection, we shall prove some properties of the proposed stochastic

structure-preserving scheme. Especially, we shall show that some important

properties of the random flows are maintained after numerical discretization.

Before proceeding to the analysis, we first introduce some notations and as-

sumptions. To emphasize the properties in spatial-domain, for any f ∈ L1(X ),

we use fχ(x) to represent f(τxχ). Moreover, we denote v(t, x, ω) = v(τxω(t)),

where τxω(t) ∈ X .

Assumption 6.1. Suppose the velocity field has certain regularity in the phys-

ical space, i.e., v ∈ (Cm
b (X ))d for some m ≥ 2.

Assumption 6.2. V χ
∆t(x) defined in (6.21) is a stationary process with respect

to x, i.e., we can write V χ
∆t(x) = V∆t(τxχ).

Assumption 6.3. If ∆t is small enough, we have V∆t ∈ (Cm
b (X ))d provides

that v ∈ (Cm
b (X ))d. In addition, ||V∆t||Cm

b (X ) = K||v||Cm
b (X )∆t, where K is a

constant that does not depend on ∆t.
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As an analogy to the continuous-time case (6.6), we define the environment

process as viewed from the numerical solution Xω
n at different time stepsηn = τXω

n
ω(n∆t),

η0 = ω(0).
(6.24)

The above environment process induces a probability measure Qχ on the space

of trajectories (Ω̃, `), where Ω̃ = C([0,∞) ∩ ∆tZ;X ). We denote the cor-

responding expectation operator as Eχ. Under this process, we can write

V∆t(ηn) = V
ω(n∆t)

∆t (Xω
n ). In addition, we define

Snf(χ) = Eχf(ηn). (6.25)

We shall prove that Sn is a discrete-time Markov semi-group of contraction on

L2(X ) and is measure-preserving with respect to P0 defined in Section 6.1.1.

Theorem 6.1. P0 is an invariant probability measure of ηn, i.e., P0 is an

invariant measure of the Markov semigroup {Sn}.

Proof. Let p1
χ(x, y) denote the transition probability density of the solution

process, which is defined by applying the numerical scheme (6.23) for one time

step. For simplicity of notation, let x be the current solution and y be the

solution obtained by applying the scheme (6.23) with time step ∆t. Notice

that Nn in (6.23) is a mean-free Gaussian random vector. We have

p1
χ(x, y) =

1

(2πσ2∆t)d/2
exp

(
−||y − x−B

χ
∆t(x)||2

2σ2∆t

)
(6.26)

=
1

(2πσ2∆t)d/2
exp

(
−||y − Φχ

∆t(x)||2

2σ2∆t

)
. (6.27)

Let us define p0(x, y) = 1
(2πσ2∆t)d/2 exp

(
− ||y−x||

2

2σ2∆t

)
. Then, we can verify that∫

p1
χ(x, y)dx =

∫
p0(x+Bχ

∆t(x), y)dx,

=

∫
p0(z, y) det(DΦχ

∆t)
−1dz =

∫
p0(z, y)dz = 1, a.e. χ,

(6.28)

where we have used the fact that the numerical scheme (6.19) for sub-problem

(6.17) is volume-preserving, i.e., det(DΦχ
∆t) = 1. Thus, for all f ∈ L2(X ), we
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have∫
X
S1f(χ)P0(dχ) =

∫
X
Eχf(η1)P0(dχ) =

∫
X
P0(dχ)

∫
Rd

p1
χ(0, y)Eχf(τyω(∆t))dy,

=

∫
X
Eχf(ω(∆t))P0(dχ)

∫
Rd

p1
τ−yχ

(0, y)dy,

=

∫
X
Eχf(ω(∆t))P0(dχ)

∫
Rd

p1
χ(−y, 0)dy,

=

∫
X
Eχf(ω(∆t))P0(dχ), (6.29)

where we have used the facts that

p1
τxχ(y, z) = p1

χ(y + x, z + x) (6.30)

, and ∫
Rd

p1
χ(−y, 0)dy = 1. (6.31)

Thus, we obtain from (6.29) that ES1f = EP∆tf = Ef , where P∆t is measure-

preserving by property (P2) in Section 6.1.1. Similar argument shows that

ESnf = ESn−1f for all n. We prove that Sn is measure-preserving.

Remark 6.1. Theorem 6.1 plays an important role in the remaining part of

our convergence analysis. Throughout the proof, one can see that using a

volume-preserving numerical scheme for solving sub-problem (6.17) is essen-

tial.

Remark 6.2. In the proof of Theorem 6.1, the probability measures p1
χ(x, y)

and p0(x, y) are associated with the Brownian motion in the passive tracer

model. While P0(dχ) is the probability measure associate with the randomness

in the velocity field and initial data. In the remaining part of this chapter, we

shall keep the same notations.

The following lemma will be very useful in our analysis.

Lemma 6.2. For any y ∈ Rd and f ∈ L2(X ), we have that

Ef(τyηn) = Ef(ηn−1) = Ef. (6.32)

Moreover,

Ef(ηn+1) = Ef
(
τXω

n +V∆t(ηn)ω
(
(n+ 1)∆t

))
= Ef. (6.33)
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Proof. We prove the above equations through direct calculations. For the

equation (6.32), we have

Ef(τyηn) = EEηn−1f(τyη̃1) =

∫
X
P0(dχ)

∫
Rd

p1
ηn−1

(0, z)Eηn−1f
(
τy+zω(∆t)

)
dz,

=

∫
X
Eηn−1f

(
ω(∆t)

)
P0(dχ)

∫
Rd

p1
τ−y−zηn−1

(0, z)dz,

=

∫
X
Eηn−1f

(
ω(∆t)

)
P0(dχ)

∫
Rd

p1
ηn−1

(−y − z,−y)dz,

=

∫
X
Eηn−1f

(
ω(∆t)

)
P0(dχ) =

∫
X
f(ηn−1)P0(dχ), (6.34)

where η̃1 is defined according to (6.24) but with initial condition η̃0 = ηn−1.

Thus, the first equation in (6.32) is proved. The second equation in (6.32) is

obvious according to the definition (6.25) and Sn is measure-preserving.

To prove the equation (6.33), let Y ω
n = Xω

n +V∆t(ηn) = Xω
n+1−σNn. Then,

we have

Ef(ηn+1) = EEηnf
(
τY ω

n +σNnω(∆t)
)

=

∫
X
P0(dχ)

∫
Rd

p0(0, z)Eηnf
(
τzτY ω

n
ω(∆t)

)
dz,

=

∫
X
Eηnf

(
τY ω

n
ω(∆t)

)
P0(dχ)

∫
Rd

p0(0, z)dz,

= Ef
(
τXω

n +V∆t(ηn)ω
(
(n+ 1)∆t

))
. (6.35)

Notice that in the proof we use the property that τ is a measure-preserving

transformation.

Equipped with these preparations, we can state the main results. The first

result is that the operator Sn defined in (6.25) is a contractive map on L2(X ).

Theorem 6.2. Sn has the property that

||Snf ||L2(X ) ≤ exp(−c1n∆t)||f ||L2(X ), (6.36)

for all f ∈ L2
0(X ).
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Proof. We first consider the case when n = 1. The key observation is that∫
X
S1f(χ) · S1f(χ)P0(dχ) =

∫
X
Eχf(η1) · Eχf(η1)P0(dχ),

=

∫
X
P0(dχ)

∫
Rd

p1
χ(0, y)Eχf(τyω(∆t))dy ·

∫
Rd

p1
χ(0, y)Eχf(τyω(∆t))dy,

≤
∫
X
P0(dχ)

∫
Rd

p1
χ(0, y)Eχf(τyω(∆t)) · Eχf(τyω(∆t))dy,

=

∫
X
Eχf(ω(∆t)) · Eχf(ω(∆t))P0(dχ)

∫
Rd

p1
χ(−y, 0)dy,

=

∫
X
P∆tf(χ) · P∆tf(χ)P0(dχ), (6.37)

where P∆t is a strongly continuous Markov semigroup on L2(X ). In the third

line of (6.37), we use the fact that p1
χ(0, y) is a probability density function so

we can easily get the result by using the Cauchy-Schwarz inequality. Therefore,

we obtain

||S1f ||L2(X ) ≤ ||P∆tf ||L2(X ) ≤ exp(−c1∆t)||f ||L2(X ), (6.38)

where the exponential decay property (6.4) is used. The assertion in (6.36)

can be obtained if we repeat to use the above property n times.

Next, we define V̄∆t = EV∆t and Ṽ∆t = V∆t − V̄∆t. We aim to get some

estimates for the mean values V̄∆t and EXω
n, which are important in our con-

vergence analysis for the effective diffusivity later.

Theorem 6.3. If we choose a volume-preserving numerical scheme (6.19) to

compute the sub-problem (6.17), where the local truncation error is O(∆t)2,

then V̄∆t is of order O(∆t)2. In addition, EXω
n − nV̄∆t is bounded.

Proof. By using a volume-preserving numerical scheme (with a local truncation

error O(∆t)2) to compute (6.17), we have

EV∆t = E

∫ ∆t

0

v(t,Xω
t , ω)dt+O(∆t)2 = E

∫ ∆t

0

v(η0
t )dt+O(∆t)2, (6.39)

where η0
t is the environment process defined in (6.6) with σ = 0. Notice that

when we define V∆t, we only consider the sub-problem (6.17). Recall the fact
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that St is measure-preserving, so we get

E

∫ ∆t

0

v(η0
t )dt =

∫ ∆t

0

∫
X
Eχv(η0

t )dP0(χ)dt =

∫ ∆t

0

EStvdt =

∫ ∆t

0

Ebdt = 0,

(6.40)

where we have used the definition of St in (6.7) and v is mean-zero. Therefore,

EV∆t is of the order (∆t)2. Moreover, from the numerical scheme (6.23) we

have

EXω
n = EXω

n−1 + EB
ω(n∆t)
∆t (Xω

n )

= EXω
0 +

n−1∑
i=0

ESiV∆t = EXω
0 +

n−1∑
i=0

ESiṼ∆t + nV̄∆t. (6.41)

According to (6.36) in Theorem 6.2, we can easily verify that
∑n−1

i=0 SiṼ∆t is

bounded in L2(X ), which implies
∣∣∑n−1

i=0 ESiṼ∆t

∣∣ < ∞. Thus, we prove that

EXω
n − nV̄∆t is bounded.

6.2.3 A discrete-type corrector problem

The corrector problem (6.15) plays an important role in defining the effec-

tive diffusivity for the random flow. To study the property of the numerical

solutions, we will define a discrete-type corrector problem and study the prop-

erty of its solution.

Theorem 6.4. Let us define ψ∆t =
∑∞

i=0 SiṼ∆t. Then, ψ∆t is the unique

solution of the discrete-type corrector problem in (L2
0(X ))d defined as follows

(S1 − I)ψ∆t = −Ṽ∆t. (6.42)

Proof. The formulation ofψ∆t solves the discrete-type corrector problem (6.42)

can be easily verified through simple calculations, i.e.,

(S1 − I)ψ∆t =
∞∑
i=1

SiṼ∆t −
∞∑
i=0

SiṼ∆t = −Ṽ∆t. (6.43)

The property Eψ∆t = 0 is a straightforward result from the formulation of

ψ∆t. The uniqueness of the solution comes from Theorem 6.2. Suppose the
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equation (6.42) has two different solutions ψ1,ψ2 ∈ L2
0(X ), we have that (S1−

I)(ψ1 −ψ2) = 0, then

||ψ1 −ψ2||L2(X ) = ||S1(ψ1 −ψ2)||L2(X ) ≤ exp(−c1∆t)||ψ1 −ψ2||L2(X ),

which implies that ψ1−ψ2 = 0. Thus, the uniqueness of solution for Eq.(6.42)

is proved.

Remark 6.3. The formulation of the discrete-type corrector problem (6.42) is

equivalent to the equation

E
[
ψ
ω(i∆t)
∆t (Xω

i )|Xω
i−1

]
−ψω((i−1)∆t)

∆t (Xω
i−1) = −Ṽ ω((i−1)∆t)

∆t (Xω
i−1). (6.44)

This can be seen by replacing χ with ηn−1 in the definition of S1; see Eq.(6.25).

Finally, we study the regularity of the solution of the discrete-type corrector

problem (6.42). The following result is based on the regularity assumption on

the velocity field v. Since we are interested in statistical properties of the

solution X(t), which only requires convergence in law, we can choose smooth

realizations of the velocity field v.

Theorem 6.5. Suppose v ∈ (Cm
b (X ))d, then ψ∆t is in (Hm(X ))d.

Proof. First we prove that, under the assumption v ∈ (Cm
b (X ))d for m ≥ 1,

we have that for any f ∈ L2(X ), S1f ∈ H1(X ). Since

S1f(τxχ) =

∫
Rd

p1
τxχ(0, y)P∆tf(τx+yχ)dy =

∫
Rd

p1
χ(x, x+ y)P∆tf(τx+yχ)dy,

=

∫
Rd

p1
χ(x, y)P∆tf(τyχ)dy, (6.45)

where p1
χ(x, y) is the transition probability density defined in (6.27). Notice

that

Dxp
1
χ(x, y) = 2

(
I + DV χ

∆t(x)
)(
y − x−Bχ

∆t(x)
)
p1
χ(x, y), (6.46)

and V∆t ∈ (Cm
b (X ))d, we can obtain that

∫
Rd(y − x−Bχ

∆t(x))2p1
χ(x, y)dx is

uniformly bounded for almost all χ. This concludes that∫
Rd

Dxp
1
χ(x, y)P∆tf(τyχ)dy ∈ L2(X ). (6.47)
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The statement (6.47) implies that DS1f ∈ L2(X ) by the dominant convergence

theorem. Thus S1f ∈ H1(X ). According to the definition of the discrete-type

corrector problem (6.42), ψ∆t satisfies

ψ∆t = S1ψ∆t + Ṽ∆t. (6.48)

Therefore, we obtain that ψ∆t ∈ (H1(X ))d. Moreover, noticing that

DS1f(χ) =

∫
Rd

Dxp
1
χ(0, y)P∆tf(τyχ)dy,

=

∫
Rd

2
(
I + DV χ

∆t(0)
)(
y − 0−Bχ

∆t(0)
)
p1
χ(x, y)P∆tf(τyχ)dy,

= 2
(
I + DV χ

∆t(0)
) ∫

Rd

−Dyp
1
χ(0, y)P∆tf(τyχ)dy,

= 2
(
I + DV χ

∆t(0)
) ∫

Rd

p1
χ(0, y)DyP

∆tf(τyχ)dy,

= 2
(
I + DV χ

∆t(0)
)
S1Df(χ). (6.49)

We arrive that

Dψ∆t = 2(I + DV∆t)S1Dψ∆t + DṼ∆t. (6.50)

Similar argument shows that Dψ∆t ∈ (H1(X ))d×d. Doing this argument re-

cursively, we prove that ψ∆t is in (Hm(X ))d.

6.3 Convergence analysis

In this section, we shall prove the convergence rate of our stochastic structure-

preserving scheme in computing effective diffusivity. The convergence analysis

is based on a probabilistic approach, which allows us to get rid of the expo-

nential growth factor in the error estimate.

6.3.1 Convergence of the discrete-type corrector prob-

lem to the continuous one

We first show that, if ∆t is small enough, S∆t will converge to S1. Moreover,

the following statement holds.
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Lemma 6.3. If f is a globally Lipschitz function with respect to x, then we

have

||Snf − Sn∆tf ||L2(X ) ≤ c2L(∆t)2, (6.51)

where L is the Lipschitz constant for f and c2 depends only on the computa-

tional time T = n∆t.

Proof. According to the definitions of the semigroups in (6.7) and (6.25), we

have that (Sn − Sn∆t)f(χ) = Eχ
(
f(ηn)− f(η(n∆t))

)
, which implies

(Sn − Sn∆t)f(χ) ≤ LEχ
∣∣Xω

n −Xω
n∆t

∣∣. (6.52)

A basic comparison with Euler-Maruyama method [32] shows that Eχ|Xω
n −

Xω
n∆t| < c2(∆t)2 for all χ with the regularity assumption for v; see Asm.

6.1.

Then, we show that under certain conditions the discrete-type corrector

problem converges to the continuous one, which facilitates the convergence

analysis of our numerical method in computing the effective diffusivity for

random flows.

Theorem 6.6. The solution ψ∆t converges to the solution ψ of the continuous-

type corrector problem defined in (6.14) in L2(X ), as ∆t→ 0.

Proof. Using the exponential decay properties of St and Sn, we first choose T

and obtain the following two inequalities∣∣∣∣ ∫ ∞
T−∆t

Stvdt
∣∣∣∣
L2(X )

≤ 1

c1

exp(−c1T ), (6.53)

∣∣∣∣ ∞∑
n=[T/∆t]−1

SnṼ∆t

∣∣∣∣
L2(X )

≤ 1

c1

exp(−c1T ), (6.54)

where c1 > 0 is defined in (6.10). Then, for any ε > 0, we choose T big enough

such that 1
c1

exp(−c1T ) < ε. Next, we estimate the error between
∑N−1

n=0 SnṼ∆t

and
∫ N∆t

0
Stvdt for N ≤ T/∆t. We know that

∣∣∣∣ ∫ N∆t

0

Stvdt−
N−1∑
n=0

Sn∆tv∆t
∣∣∣∣
L2(X )

≤ C1∆t (6.55)
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due to the strongly continuity of St (see Prop. 6.2) and

∣∣∣∣N−1∑
n=0

SnṼ∆t −
N−1∑
n=0

Sn∆tv∆t
∣∣∣∣
L2(X )

≤
∣∣∣∣N−1∑
n=0

SnṼ∆t −
N−1∑
n=0

Snv∆t
∣∣∣∣
L2(X )

+
∣∣∣∣N−1∑
n=0

Snv∆t−
N−1∑
n=0

Sn∆tv∆t
∣∣∣∣
L2(X )

. (6.56)

Since local truncation error of the numerical scheme (6.19) is at least second

order, we have
∣∣∣∣Ṽ∆t − v∆t

∣∣∣∣
L2(X )

≤ O(∆t)2. The Lemma 6.3 implies
∣∣∣∣(Sn −

Sn∆t)v∆t
∣∣∣∣
L2(X )

≤ O(∆t)2 for all n ≤ N . This gives the estimate

∣∣∣∣N−1∑
n=0

SnṼ∆t −
N−1∑
n=0

Sn∆tv∆t
∣∣∣∣
L2(X )

≤ c2N(∆t)2 ≤ c2T∆t. (6.57)

Finally, we take ∆t ≤ ε/(c2T ) and obtain

∣∣∣∣ ∫ ∞
0

Stvdt−
∞∑
n=0

SnṼ∆t

∣∣∣∣
L2(X )

≤ 3ε. (6.58)

We prove the assertion of the Theorem.

Remark 6.4. The constant c2 in Lemma 6.3 is actually exponentially depends

on T , i.e., c2 = exp(c3T ) with c3 > 0. To balance each value of ε, we have

1
c1

exp(−c1T ) = exp(c3T )T∆t, which requires T ≈ −1/(c1 + c3) log ∆t and

ε ≈ 1
c1

∆t
c1

c1+c3 .

6.3.2 Convergence of the numerical method in comput-

ing effective diffusivity

Now we are in a position to show the main results in random flows. We

prove that the effective diffusivity obtained by our numerical method converges

to the exact one defined in (6.16).

Theorem 6.7. Let Xω
n , n = 0, 1, .... be the numerical solution of the stochastic

structure-preserving scheme (6.23) and ∆t be the time step. Let X̄ω
n = Xω

n −

nV̄∆t. We have the convergence estimate of the numerical method in computing

effective diffusivity as

EX̄ω
n ⊗ X̄ω

n

n∆t
= σ2Id + 2S

∫
X
ψ ⊗ vdP0 + ρ(∆t) +O(

1√
n∆t

), (6.59)
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where ρ(∆t) = O(∆t
c1

c1+c3 ) is a function satisfying lim∆t→0 ρ(∆t) = 0 and

independent of the computational time T . The S represents the symmetrization

operator on a matrix, i.e., SA = A+AT

2
.

Proof. First of all, from direct computations we can obtain that

EX̄ω
n ⊗ X̄ω

n

=E
(
X̄ω
n−1 + Ṽ

ω((n−1)∆t)
∆t (Xω

n−1) + σNn−1

)
⊗
(
X̄ω
n−1 + Ṽ

ω((n−1)∆t)
∆t (Xω

n−1) + σNn−1

)
,

=EX̄ω
n−1 ⊗ X̄ω

n−1 + σ2Id∆t+ 2SEX̄ω
n−1 ⊗ Ṽ

ω((n−1)∆t)
∆t (Xω

n−1)

+ EṼ
ω((n−1)∆t)

∆t (X̄ω
n−1)⊗ Ṽ ω((n−1)∆t)

∆t (Xω
n−1),

=EX̄ω
0 ⊗ X̄ω

0 + σ2Idn∆t+ 2
n∑
i=1

SEX̄ω
i−1 ⊗ Ṽ

ω((i−1)∆t)
∆t (X̄ω

i−1)

+
n∑
i=1

EṼ
ω((i−1)∆t)

∆t (Xω
i−1)⊗ Ṽ ω((i−1)∆t)

∆t (Xω
i−1), (6.60)

where we have used the conditions Nn−1 is independent with X̄ω
n−1 and ENn⊗

Nn = ∆tId.

The first two terms on the right hand side of Eq.(6.60) are easy to handle

since
EX̄ω

0 ⊗X̄ω
0

n∆t
= O( 1

n∆t
) and σ2Idn∆t

n∆t
= σ2Id. For the forth term of the right

hand side of Eq.(6.60), using the property that Si is measure-preserving; see

Theorem 6.1 and Assumption 6.3 , we can get

1

n

n∑
i=1

EṼ
ω((i−1)∆t)

∆t (Xω
i−1)⊗ Ṽ ω((i−1)∆t)

∆t (Xω
i−1)

=
1

n

n∑
i=1

ESi−1(Ṽ∆t ⊗ Ṽ∆t) =
1

n
nEṼ∆t ⊗ Ṽ∆t = O(∆t)2. (6.61)

We shall focus on the third term on the right hand side of (6.60), which

corresponds to the strengthen of the convection-enhanced diffusion and is the

most difficult term. Substituting the formulation of the discrete-type corrector
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problem (6.44) into it, we obtain that

n∑
i=1

EX̄ω
i−1 ⊗ Ṽ

ω((i−1)∆t)
∆t (Xω

i−1)

=−
n∑
i=1

EX̄ω
i−1 ⊗

(
E[ψ

ω(i∆t)
∆t (Xω

i )|Xω
i−1]−ψω((i−1)∆t)

∆t (Xω
i−1)
)
,

=−
n∑
i=1

EX̄ω
i−1 ⊗

(
ψ
ω(i∆t)
∆t (Xω

i )−ψω((i−1)∆t)
∆t (Xω

i−1)
)
,

=−
n∑
i=1

E(X̄ω
i−1 − X̄ω

i )⊗ψω(i∆t)
∆t (Xω

i ) + EX̄ω
0 ⊗ψ

ω(0)
∆t (Xω

0 )− EX̄ω
n ⊗ψ

ω(n∆t)
∆t (Xω

n ),

=
n∑
i=1

E
(
Ṽ
ω((i−1)∆t

∆t (Xω
i−1) + σNi−1)

)
⊗ψω(i∆t)

∆t (Xω
i )

+ EX̄ω
0 ⊗ψ

ω(0)
∆t (Xω

0 )− EX̄ω
n ⊗ψ

ω(n∆t)
∆t (Xω

n ). (6.62)

Let us first estimate the summation term on the right hand side of (6.62). For

each index i, we have

E
(
Ṽ
ω((i−1)∆t)

∆t (Xω
i−1) + σNi−1

)
⊗ψω(i∆t)

∆t (Xω
i ),

=EṼ
ω((i−1)∆t)

∆t (Xω
i−1)⊗ψω(i∆t)

∆t (Xω
i ) + EσNi−1 ⊗ψω(i∆t)

∆t (Xω
i ). (6.63)

Through simple calculations, we will show that the second term of the right

hand side of (6.63) is zero. Specifically, we have

EσNi−1 ⊗ψω(i∆t)
∆t (Xω

i )

=EσNi−1 ⊗ψω(i∆t)
∆t

(
Xω
i−1 + V

ω((i−1)∆t)
∆t (Xω

i−1) + σNi−1

)
,

=

∫
X

∫
Rd

p0(0, y)σy ⊗ψ∆t

(
τσyτXω

i−1+V∆t(ηi−1)ω(i∆t)
)
dyP0(dχ),

=

∫
Rd

p0(0, y)σy ⊗
∫
X
ψ∆t

(
τσyτXω

i−1+V∆t(ηi−1)ω(i∆t)
)
P0(dχ)dy,

=

∫
Rd

p0(0, y)σy ⊗ Eψdy = 0. (6.64)

Here, the expectation is taken over all the randomness in the system. Thus, in

the third row of (6.64), y is a realization of Ni−1 and p0(0, y)dy is the measure

associated with the Brownian motion, while P0(dχ) is the measure associate

with the randomness in the velocity field and initial data. The Fubini’s theorem

is used in the fourth row of (6.64) to switch the order of integration. The fifth

row of (6.64) is derived from Lemma 6.2; see Eq.(6.33). Moreover, Eψ = 0
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since the solution of the discrete-type corrector problem is mean-zero; see

Theorem 6.4.

Then, we compute the first term of the right hand side of (6.63) as follows,

EṼ
ω((i−1)∆t)

∆t (Xω
i−1)⊗ψω(i∆t)

∆t (Xω
i ) = EṼ∆t(ηi−1)⊗ψ∆t(ηi)

=EE
(
Ṽ∆t(ηi−1)⊗ψ∆t(ηi)

∣∣ηi−1

)
= EṼ∆t(ηi−1)⊗ E

(
ψ∆t(ηi)

∣∣ηi−1

)
=EṼ∆t(ηi−1)⊗ S1ψ∆t(ηi−1) = EṼ∆t(ηi−1)⊗

(
ψ∆t(ηi−1)− Ṽ∆t(ηi−1)

)
=EṼ∆t(ηi−1)⊗ψ∆t(ηi−1)− EṼ∆t(ηi−1)⊗ Ṽ∆t(ηi−1)

=ESi−1(Ṽ∆t ⊗ψ∆t)− ESi−1(Ṽ∆t ⊗ Ṽ∆t). (6.65)

Using the property that each Si−1 is measure-preserving; see Theorem 6.1, we

have

1

n

n∑
i=1

EṼ
ω((i−1)∆t)

∆t (Xω
i−1)⊗ψω(i∆t)

∆t (Xω
i ) = EṼ∆t ⊗ψ∆t − EṼ∆t ⊗ Ṽ∆t. (6.66)

The term EṼ∆t ⊗ ψ∆t in (6.66) is corresponding to the strengthen of the

convection-enhanced diffusion. The term EṼ∆t ⊗ Ṽ∆t in (6.66) is of the order

O(∆t)2 due to (6.3) . This completes the estimate of the first term in Eq.(6.62).

Now, we estimate the second term and third term in Eq.(6.62). The second

term EX̄ω
0 ⊗ψ

ω(0)
∆t (Xω

0 ) is trivial since it does not depend on n and is bounded.

For the third term, we want to prove that

1

n∆t

∣∣∣∣EX̄ω
n ⊗ψ

ω(n∆t)
∆t (Xω

n )
∣∣∣∣ ≤ O(

1√
n∆t

), (6.67)

where || · || is a matrix norm. By using the Holder’s inequality, we know that

each entry of EX̄ω
n ⊗ψ

ω(n∆t)
∆t (Xω

n ) satisfies

∣∣E(X̄ω
n )i
(
ψ
ω(n∆t)
∆t (Xω

n )
)
j

∣∣ ≤ (E[(X̄ω
n )i]

2
)1/2(

E[(ψ
ω(n∆t)
∆t (Xω

n ))j]
2
)1/2

, 1 ≤ i, j ≤ d.

(6.68)

Again, using the property that Sn is measure-preserving; see Theorem 6.1, we

have

E
[
(ψ

ω(n∆t)
∆t (Xω

n ))j
]2

= E
(
ψ∆t,j(ηn)

)2
= ESn(ψ∆t,j)

2 = E(ψ∆t,j)
2, (6.69)

which is bounded since ψ∆t ∈ (L2
0(X ))d according to Theorem 6.4. Thus, if
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we can prove 1
n
E[(X̄ω

n )i]
2 is bounded, then

1

n∆t

∣∣E(X̄ω
n )i(ψ

ω(n∆t)
∆t (Xω

n ))j
∣∣ ≤ 1√

n∆t
(
1

n
E[(X̄ω

n )i]
2)1/2(E[(ψ

ω(n∆t)
∆t (Xω

n ))j]
2)1/2

= O(
1√
n∆t

). (6.70)

In order to prove that 1
n
E[(X̄ω

n )i]
2 is bounded, we apply the AM-GM in-

equality on the diagonal entries of EX̄ω
n ⊗ψ

ω(n∆t)
∆t (Xω

n ) and obtain,∣∣E(X̄ω
n )i(ψ

ω(n∆t)
∆t (Xω

n ))i
∣∣ ≤ εE[(X̄ω

n )i]
2 + (4ε)−1E[(ψ

ω(n∆t)
∆t (Xω

n ))i]
2, 1 ≤ i ≤ d,

(6.71)

where ε > 0.

We substitute the result (6.71) into (6.62), and then substitute the esti-

mated results of (6.62) (including Eqns.(6.64)(6.66)) into the original equation

6.60. Here we only consider the equations for the diagonal elements. Combin-

ing all the estimate results for terms on the right hand side of 6.60, we obtain

an estimate for E[(X̄ω
n )i]

2 as follows,

E[(X̄ω
n )i]

2 ≤ (Rn)i + εE[(X̄ω
n )i]

2, (6.72)

where (Rn)i denotes all the remaining terms with (Rn)i = O(n). Thus, we

choose 0 < ε < 1 (e.g. ε = 1/3), move εE[(X̄ω
n )i]

2 to the left hand side of

(6.72), and obtain that 1
n
E||X̄ω

n ||2 is bounded by the ergodicity of X̄ω
n . Hence,

we prove the claim in (6.67).

Finally, we combine the estimate results in Eqns.(6.60)(6.61)(6.62)(6.66)(6.70)

and obtain that

EX̄ω
n ⊗ X̄ω

n

n∆t
= σ2Id + 2SEψ∆t ⊗ Ṽ∆t/∆t+O(∆t) +O(

1√
n∆t

). (6.73)

According to Theorem 6.6 and Remark 6.4, we have the estimate∣∣∣∣2SEψ∆t ⊗ Ṽ∆t/∆t− 2SEψ ⊗ v
∣∣∣∣
L2(X )

= O(∆t
c1

c1+c3 ) := ρ(∆t), (6.74)

where lim∆t→0 ρ(∆t) = 0. Thus, the statement in (6.59) is proved.

Remark 6.5. Theorem 6.7 shows that when the time step is given and fixed,

we have

lim
n→∞

EX̄ω
n ⊗ X̄ω

n

n∆t
= σ2Id + 2S

∫
X
ψ ⊗ vdP0 + ρ(∆t), (6.75)
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which reveals the connection of the definition of the effective diffusivity by solv-

ing discrete-type and continuous-type corrector problems. Our result appears

to be the first one in the literature to build this connection.

Notice that in the Theorem 6.7, we assume X̄ω
n = Xω

n − nV̄∆t are given,

where we use Monte carlo method to compute V̄∆t. In some cases, if we

cannot calculate the drift constant V̄∆t exactly, we can directly estimate the

term EXω
n ⊗Xω

n , which is summarized in the following corollary.

Corollary 6.1. Let Xω
n , n = 0, 1, .... be the numerical solution of the stochas-

tic structure-preserving scheme (6.23) and ∆t be the time step that is fixed.

Suppose n(∆t)3 and 1√
n∆t

are small enough, we have

EXω
n ⊗Xω

n

n∆t
= σ2Id + 2S

∫
X
ψ ⊗ vdP0 + ρ(∆t) +O(

1√
n∆t

) +O
(
n(∆t)3

)
,

(6.76)

where ρ(∆t) = O(∆t
c1

c1+c3 ) is a function satisfying lim∆t→0 ρ(∆t) = 0 and inde-

pendent of the computational time T , and the S represents the symmetrization

operator.

Proof. Using the observation that

EXω
n ⊗Xω

n

n∆t
=
EX̄ω

n ⊗ X̄ω
n

n∆t
+

2SEX̄ω
n ⊗ V̄∆t

∆t
+
n2V̄∆t ⊗ V̄∆t

n∆t
(6.77)

and Theorem 6.3, we can straightforwardly get the proof.

Remark 6.6. In our convergence analysis, we interpret the solution process

generated by our numerical scheme as a Markov process. By exploring the

ergodicity of the solution process (i.e., Markov process), we give a sharp error

estimate of the proposed numerical scheme in computing effective diffusivity.

6.4 Numerical results

The aim of this section is two-fold. First, we will verify the convergence

results obtained in Section 6.3.2. Second, we will use the proposed method
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to compute effective diffusivity in random flows, where incompressible random

flows in two- and three-dimensional space will be studied. Without loss of

generality, we compute the quantity
E[(Xω

n,1)2]

2n∆t
, which is used to approximateDE

11

in the effective diffusivity matrix DE. Notice that Xω
n,1 is the first component

of the solution vector Xω
n . One can obtain DE

11 by choosing v = (1, 0)T in the

equation (6.16) of the Prop. 6.4.

6.4.1 Numerical methods for generating random flows

To start with, we discuss how to generate random flows that will be used

in our numerical experiments. Assume the vector field v(t, x, ω) has a spectral

measure

exp(−r(k)|t|)Γ(k)(I− k⊗ k

|k|2
), (6.78)

where k = (k1, k2)T or k = (k1, k2, k3)T , r(k) > c0 for some positive constant

c0, and Γ(k) is integrable and decays fast for large k. Under such settings,

the velocity field v(t, x, ω) satisfies the ρ mixing condition and is stationary

and divergence free [48, 14]. In order to mimic the energy spectrum of real

flows, we assume Γ(k) ∝ 1/|k|2α+d−2 with ultraviolet cutoff |k| ≤ K < ∞

and r(k) ∝ |k|2β. The spectral gap condition 6.3 requires β ≤ 0 and the

integrability of Γ(k) requires α < 1. Here for simplicity, we choose β = 0.

Given the spectral measure (6.78), we use the randomization method [33,

37] to generate realizations of the velocity field. Specifically, we approximate

it as

v(t, x) =
1√
M

M∑
m=1

[
um cos(km · x) + vm sin(km · x)

]
. (6.79)

Notice that we have suppressed the dependence of the velocity on ω for notation

simplicity here. In fact, the parameters km, um and vm contain randomness.

The spectrum points km were chosen independently according to the spectral

measure Γ(k). Due to the isotropicity, we first generate a point uniformly

distributed on the unit sphere or unit circle, which represents the direction of
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the km. Then we generate the length r of km, which satisfies a density function

ρ(r) ∝ 1/r2α−1, 0 < r ≤ K.

For the random flows in two-dimensional space, we have

um = Nm(t)
k⊥m
|k⊥m|

, vm = ηm(t)
k⊥m
|k⊥m|

, km = (k1
m, k

2
m), m = 1, ...,M,

(6.80)

where k⊥m = (−k2
m, k

1
m), Nm(t) and ηm(t) are independent 1D Ornstein-Uhlenbeck

(OU) processes with covariance function

Cov(Nm(t1), Nm(t2)) = Cov(ηm(t1), ηm(t2)) = exp(−θ|t1 − t2|).

Here θ > 0 is a parameter to control the roughness of the OU process. To

obtain the OU path for Nm(t), we generate a series of {Nm(n∆t)} satisfies

Nm(n∆t) = e−θ∆tNm((n− 1)∆t) +
√

1− e−2θ∆tζn, n = 1, 2, 3, ... (6.81)

where Nm(0), ζn, n = 1, 2, 3, ... are i.i.d. N(0, 1) distributed random variables.

One can easily verify that Cov(Nm(i∆t), Nm(j∆t)) = exp(−θ|i − j|∆t). The

OU path for ηm(t) can be generated by using the same approach.

For the random flows in three-dimensional space, we have

um = Nm(t)× km
|km|

, vm = ηm(t)× km
|km|

, km = (k1
m, k

2
m, k

3
m), (6.82)

where the samples Nm(t) and ηm(t) are independent 3D random vectors, whose

components are independent stationary OU process having the covariance

function Cov(Nm(t1), Nm(t2)) = Cov(ηm(t1),ηm(t2)) = exp(−θ|t1 − t2|)I3.

Each component of Nm(t) and ηm(t) can be generated by using the method

(6.81). One can easily verify that in both the 2D and 3D cases the velocity

fields generated by (6.79) satisfy the divergence free condition.

6.4.2 Verification of the convergence analysis

In this subsection, we study the convergence rate of our method in com-

puting incompressible random flow in 2D and 3D space.
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For the random flow in 2D space, we solve the SDE (2.1), where the ve-

locity filed is chosen as (6.79) with the setting (6.80). The velocity field were

simulated with M = 1000. The parameters in the spectral measure Γ(k) are

K = 10 and α = 0.75. The time-mixing constant θ = 10 in the covariance

function. The molecular diffusivity σ = 0.1. We use Monte Carlo method

to generate dependent samples for the Brownian motion Wt and velocity field

v(t, x). The sample number is denoted by Nmc.

We choose time step ∆tref = 0.001 and Nmc = 100, 000 to solve the SDE

(2.1) and compute the reference solution, i.e., the “exact” effective diffusivity,

where the final computational time is T = 22 so that the calculated effective

diffusivity converges to a constant. It takes about 24 hours to compute the ref-

erence solution on a 64-core server (Gridpoint System at HKU). The reference

solution for the effective diffusivity is DE
11 = 0.1736.

For the random flow in 3D space, we solve the SDE (2.1), where the velocity

field is chosen as (6.79) with the setting (6.82). The velocity field were simu-

lated with M = 100. The parameters in the spectral measure Γ(k) are K = 10

and α = 0.75. The time-mixing constant θ = 10 in the covariance function.

The molecular diffusivity σ = 0.1. Again, we use Monte Carlo method to

generate dependent samples for the Brownian motion Wt and velocity field

v(t, x).

We choose ∆tref = 0.001 and Nmc = 180, 000 to solve the SDE (2.1) and

compute the reference solution, i.e., the “exact” effective diffusivity, where the

final computational time is T = 25 so that the calculated effective diffusivity

converges to a constant. It takes about 21 hours to compute the reference

solution on a 64-core server (Gridpoint System at HKU). The reference solution

for the effective diffusivity is DE
11 = 0.1137. We remark that in our numerical

experiment, we choose M = 1000 for 2D random flow and M = 100 for

3D random flow so that the velocity field numerically satisfies the ergodicity

assumption.

In Fig.6.1(a), we plot the convergence results of the effective diffusivity
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for the 2D random flow using our method (i.e.,
E[(Xω

n,1)2]

2n∆t
) with respective to

different time-step ∆t at T = 22, where the number of the Monte Carlo samples

Nmc = 50, 000. In addition, we show a fitted straight line with the slope

1.17, i.e., the convergence rate is about O(∆t)1.17. Similarly, we show the

convergence results of
E[(Xω

n,1)2]

2n∆t
for the 3D random flow in Fig.6.1(b) with

respective to different time-step ∆t at T = 25, where the number of the Monte

Carlo samples Nmc = 50, 000. We also show a fitted straight line with the

slope 0.98, i.e., the convergence rate is about O(∆t)0.98. These numerical

results agree with our error analysis.
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E
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Figure 6.1: Error of DE
11 for random flows with different time-steps. Left: 2D,

fitted slope ≈ 1.17; right 3D, fitted slope ≈ 0.98.

6.4.3 Verification of the exponential decay property.

The time relaxation property (6.3), which is equivalent to the exponential

decay property (6.4), plays an important role in the existence of the effective

diffusivity; see Prop. 6.4. In Theorem 6.2, we prove that the numerical solu-

tions inherit the exponential decay property. Based on this key fact, we can

define the discrete-type corrector problem and prove the convergence analysis

of our method. In this subsection, we will verify that the velocity field prop-

agated by the random flow (6.79) has the exponential decay property, where

both the 2D and 3D cases will be tested.

In the experiment for 3D random flow, we choose the time step size ∆t =
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0.05. The velocity field will be approximated by M = 100 terms in (6.79) with

the setting (6.82). The parameters in the spectral measure Γ(k) are K = 10

and α = 0.75. The molecular diffusivity σ = 0.1. We randomly generate 200

samples {kim, N i
m(0),ηim(0),m = 1, ...,M}, i = 1, ..., 200, which will be used to

generate initial states for the velocity field (6.79), i.e.,

vi(0, x) =
1√
M

M∑
m=1

[
N i
m(0)× kim

|kim|
cos(kim · x) + ηim(0)× kim

|kim|
sin(kim · x)

]
,

i = 1, ..., 200.

(6.83)

Then, for each initial state vi(0, x), we generate 5000 different samples of the

OU paths N i,p
m (n∆t) and ηi,pm (n∆t) and Brownian motion paths wi,p(n∆t),

1 ≤ p ≤ 5000. Given the sample data, we calculate the corresponding solution

paths {X i,p
n }0≤n<∞ and then calculate the value

vi,p(n∆t,X i,p
n ) =

1√
M

M∑
m=1

[
N i,p
m (n∆t)× kim

|kim|
cos(kim ·X i,p

n )

+ ηim(n∆t)× kim
|kim|

sin(kim ·X i,p
n )
]
,

i = 1, ..., 200, 1 ≤ p ≤ 5000. (6.84)

Finally, we compute v̄in = 1
5000

∑5000
p=1 v

i,p(n∆t,X i,p
n ) and the sample variance

of v̄in with respect to i. The experiment for 2D random flow is almost the

same except the setting of the velocity filed (6.82) is replaced by (6.80) and

we choose M = 1000.

In Fig. 6.2(a) and Fig. 6.2(b), we plot the calculated sample variance

of the first component of v̄in for the 2D random flow and 3D random flow,

respectively. We observe exponential decay of the sample variance with respect

to time. Moreover, we find that larger θ leads to a faster decay in the sample

variance, since larger θ results in a fast decorrelation in the random flow. Our

numerical results show that the exponential decay property (see Theorem 6.2)

holds for the random flows we studied here.
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Figure 6.2: Decay behaviors of the sample variance in 2D and 3D random

flows. Left: 2D; right 3D.

6.4.4 Investigation of the convection-enhanced diffusion

phenomenon

In the first experiment, we study the relation between the numerical effec-

tive diffusivity
E[(Xω

n,1)2]

2n∆t
and the parameter θ, which controls the de-correlation

rate in the temporal dimension of the random flow. In this experiment, the

setting of the velocity field and the implementation of our method is the same

as we used in Section 6.4.3. We only choose different parameter θ to compute

the numerical effective diffusivity.

In Fig.6.3(a), we plot the numerical effective diffusivity of 2D random flow

obtained at different computational times, where the flow is generated with

different θ. The result for 3D random flow is shown in Fig.6.3(b). We find

that different θ affects the mixing time of the system. When we increase the

θ, the system will quickly enter a mixing stage.

In the second experiment, we choose different molecular diffusivity σ to

compute the corresponding numerical effective diffusivity, which allows us to

study the existence of residual diffusivity for this random flow. The residual dif-

fusivity, a special yet remarkable convection-enhanced diffusion phenomenon,

refers to the non-zero and finite effective diffusivity in the limit of zero molec-
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Figure 6.3: The relation between numerical effective diffusivity and θ. Left:

2D; right 3D.

ular diffusivity as a result of a fully chaotic mixing of the streamlines.

In the experiment for 2D random flow, we choose the time step ∆t = 0.05,

the velocity field were simulated with M = 1000, the time-mixing constant

θ = 0.1 and the parameters in the spectral measure Γ(k) are K = 10 and

α = 0.75. For the 3D random flow, we choose M = 100 and keep other

parameters the same.

Let κ = σ2/2. In Fig.6.4(a), we show the relation between numerical effec-

tive diffusivity of 2D random flow obtained at different computational times,

where the result is generated with different σ. The result for 3D random flow is

shown in Fig. 6.4(b). We find that as κ approaches zero, the quantity
E[(X̄ω

n,1)2]

2n∆t

converges to a non-zero (positive) constant, which indicates the existence of

residual diffusivity in the random flows here.

In Fig.6.5(a) and Fig.6.5(b), we plot the convergence behaviors of DE
11(κ)

approaching DE
11(0) for the 2D and 3D random flows, respectively, when the

systems enter a mixing stage. The convergence behaviors when κ approaches

zero are slightly different though, both figures show that residual diffusivity

exists in the random flows we studied here.
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Figure 6.4: The relation between numerical effective diffusivity and molecular

diffusivity σ. Left: 2D; right 3D.
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Figure 6.5: Convergence behaviors of DE
11(κ) approaching DE

11(0). Left: 2D;

right 3D
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Chapter 7

Concluding Discussions

In this thesis, we explored the Lagrangian numerical schemes in comput-

ing effective diffusivities for chaotic and random flows. The schemes relied on

the Lagrangian formulation of the effective diffusivities in the parabolic ho-

mogenization. To facilitate the possible long time integration in Lagrangian

approach, the schemes were proposed to be structure preserving.

To be specific, we decomposed the dynamical systems into two sub-systems

and applied the idea of operator splitting. The first sub-system is volume-

preserving transform defined by the velocity fields, so we applied a volume-

preserving scheme. The second sub-system is driven by Brownian motion.

Since we have assumed there is no spatial dependence for the Brownian notion,

Euler Maruyama scheme gives the exact solution. Combining together, the

schemes preserve the invariant measure for the system on torus. Base on

this, and the ergodicity of the scheme, we proved the error of our Lagrangian

schemes converges asymptotically, then uniformly in time.

In numerical examples, we verified the convergence rate of our scheme in

all types of flows within the scope of the thesis. The novelty of the thesis

in numerical parts is to observe the scaling of diffusion enhancement in van-

ishing monocular diffusion regime for chaotic and random flows, especially in

3D. Currently we categorized the scaling to four types: vanishing, residual,
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sub-maximal and maximal. We conclude the phenomena in different flows as

follows.

Taylor Green flow in 2D As an unsteady flow in 2D, the diffusion enhance-

ment is proven to attain O(
√
D0) scaling. Our Lagrangian schemes also

captured such vanishing scaling.

Random flows Two types of random flows were investigated. The first one is

by involving stochastic processes as coefficients in deterministic stream-

lines and the second is directly generated by given energy spectra. In

both cases, we observed a residual diffusion phenomenon. The resid-

ual diffusivities in such cases may be the chaotic characteristics of the

random advection.

ABC flow As the possible result of existence of ballistic orbits, chaos in ABC

flows are weakest among the flows in this thesis. We found maximal

enhancement phenomena in ABC flows. Also as a non-mixing flow, the

mixing time lasts as long as O( 1
D0

).

Kolmogorov flow Comparing to ABC flows, Kolmogorov flows are more

chaotic, even possibly weakly mixing. We identified the enhancement

as sub-maximal and the mixing time is significantly shorter than one in

ABC flows.

Time dependent flows We also investigated several time dependent flows

which resembles Taylor Green, ABC and Kolmogorov flows correspond-

ingly. For different setting of parameters, the scaling ranges in residual,

sub-maximal and maximal. The effects of parameters are usually non-

uniform. On the other hand, in general, the time dependency breaks

the closed (or ballistic) orbits in convection, so the flow always becomes

more chaotic.

As a final conclusion, schemes, proposed in this thesis, developed a novel

and numerical attainable way to quantify chaos in the flows.
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7.1. Future direction

7.1 Future direction

There are several possible or on-going directions that might deserve further

investigation.

Calculation of KPP front speed The KPP problem was raised by Kol-

mogorov, Petrovskii, and Piskunov in 1937. It is a homogenization problem

in reaction-convection-diffusion equation. It is shown in [49] that KPP front

speed is bounded by effective diffusivities up to constants in 2D periodic flows.

As schemes proposed in this thesis perform well in calculating effective diffusiv-

ities, we are seeking schemes that best fit in calculating front speed numerically.

Moreover, the critical speed can be calculated by principal eigenvalues of a se-

ries of Fokker-Planck operators defined by the flow [54]. In [22] a semigroup

analysis shows that the numerical schemes for SDE may preserve the princi-

ple eigenvalues of the Fokker-Planck operators. Our study in this aspect may

bring very promising result both in theory and in physics.

Investigation of mixing properties Our numerical experiment shows there

are two factors that influence the mixing time. First is the molecular diffusiv-

ities D0, it decorrelates (mix) the particles exponentially fast. So the mixing

time is bounded by O( 1
D0

). However, when D0 turns to 0, the second fac-

tor dominates. It is the mixing properties of the flow. Currently during our

calculation of effective diffusivities, we can also infer the mixing time of the

dynamics. Fig.6.4 shows there is strong mixing in our proposed random flows.

Fig.4.6(a) implies Kolmogorov flow might be weakly mixing. Fig.4.3(a) shows

different case in ABC flows that as a type of chaotic flow it is non-mixing.

Our study may include two steps. The first is the relation mixing phe-

nomenon in our discrete calculation and one in continuous dynamics. [21]

shows that there are gaps between these two in general. While we may find

the equivalence in cases we concerns. The second is to decide a robust statistic

to quantify the mixing time.
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7.1. Future direction

Unification in categorizing chaos To the best knowledge of the authors,

none of definitions of chaos are in agreement with [50]. The scaling metric

proposed has shown strong correlation in numerical experiments with several

other chaotic properties of flows, including, mixing time, Lyapunov exponent,

etc. And the proposed schemes in calculating the scaling are shown to be ro-

bust. Our goal from this orientation can be twofold. First is to propose robust

schemes to investigate diffusion enhancement in all types of flows. Second,

we may investigate the relation between different properties bridging by the

enhancement.
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Appendix: Notations and

Abbreviations

I. The following notations are used in the thesis.

Z: the set of integers.

Rd: d-dimensional real Euclidean space.

Td: d-dimensional tours space, a quotient space defined by Td = Rd/Zd.

||v||: the Euclidean norm of vector v.

||v||p: the p-norm of vector v.

|x|: the absolute value of a scalar, equivalent to ||x||.

∇: gradient operator in spacial direction (x).

∆: Laplacian operator in spacial direction (x).

v·w: inner product, given two Rd vector, v = (v1, v2, · · · , vd), w = (w1, w2, · · · , wd),

v · w =
d∑
i=1

viwi.

v⊗w: Kronecker product, given two vector, v = (v1, v2, · · · , vm), w = (w1, w2, · · · , wn),

v · w =


v1w1 · · · v1wn

:
. . . :

vmw1 · · · vmvn

 .
xT : the transpose of the vector (or matrix) x.

Id: constant identity matrix in Rd×d.

a ∝ b: a is proportional to b.

A(α) = O(|α|p), A(α) � |α|p: ||A(α)||/|α|p ≤ C as α → 0, where C is a

non-negative bounded constant.
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7.1. Future direction

O(|α|p): only appears in equation, means the term is bounded by C|α|p as

α→ 0, where C is a non-negative bounded constant.

A ∪B: the union of A and B.

A ∩B: the intersection of A and B.

∅: the empty set.

Cp,α(Y ): the Hölder space whose p-th order derivatives are α−Hölder contin-

uous.

Cp,α(Y ): the homogeneous Hölder space whose p-th order derivatives are α−Hölder

continuous and spacial mean is zero.

[A,B]: commutator of A and B, [A,B] = AB −BA.

(Ω,Ft, P ): probability space.

E[X|F ]: conditional expectation of X given F .

P (A|B): the probability of A given B.

D0: the coefficient of Laplacian in generators, related to monocular diffusion

coefficient σ by D0 = σ2

2
.

DE: effective diffusivities matrix

II. The following abbreviations are used in the thesis.

ABC: Arnold-Beltrami-Childress

BCH: Baker-Campbell-Hausdorff

BEA: Backward Error Analysis

EM: Euler-Maruyama

KPP: Kolmogorov-Petrovskii-Piskunov

ODE: ordinary differential equation.

PDE: partial differential equation.

SDE: stochastic differential equation.
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Chaotic streamlines in the ABC flows. Journal of Fluid Mechanics,

167:353–391, 1986.

[14] Paul Doukhan. Mixing: properties and examples, volume 85. Springer

Science & Business Media, 2012.

[15] L. C. Evans. Partial Differential Equations, volume 2. American Mathe-

matical Society, 2010.

[16] A. Fannjiang and G. Papanicolaou. Convection-enhanced diffusion for

periodic flows. SIAM J Appl. Math., 54:333–408, 1994.

[17] A. Fannjiang and G. Papanicolaou. Diffusion in turbulence. Probability

Theory and Related Fields, 105(3):279–334, 1996.

[18] A. Fannjiang and G. Papanicolaou. Convection-enhanced diffusion for

random flows. J. Stat. Phys., 88:1033–1076, 1997.

[19] Albert Fannjiang and Tomasz Komorowski. Turbulent diffusion in marko-

vian flows. Annals of Applied Probability, pages 591–610, 1999.

[20] K. Feng and Z. Shang. Volume-preserving algorithms for source-free dy-

namical systems. Numerische Mathematik, 71(4):451–463, 1995.

130



Bibliography

[21] Yuanyuan Feng and Gautam Iyer. Dissipation enhancement by mixing.

Nonlinearity, 32(5):1810, 2019.
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